Share This Article:

Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs

Abstract Full-Text HTML XML Download Download as PDF (Size:2026KB) PP. 46-139
DOI: 10.4236/ojpsych.2013.31008    6,898 Downloads   12,771 Views   Citations


Antipsychotic drugs are the neuroleptics currently used in the treatment of schizophrenia (SCZ) and psychotic disorders. SCZ has a heritability estimated at 70% - 90%; and pharmacogenomics accounts for 60% - 90% variability in the pharmacokinetics and pharmacodynamics of psychotropic drugs. Personalized therapeutics based on individual genomic profiles in SCZ entails the characterization of 5 types of gene clusters and their related metabolomic profiles: 1) genes associated with disease pathogenesis; 2) genes associated with the mechanism of action of drugs; 3) genes associated with drug metabolism (phase I and II reactions); 4) genes associated with drug transporters; and 5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. Genetic studies in SCZ have revealed the presence of chromosome anomalies, copy number variants, multiple single-nucleotide polymorphisms of susceptibility distributed across the human genome, aberrant single-nucleotide polymorphisms in microRNA genes, mitochondrial DNA mutations, and epigenetic phenomena. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variation in specific candidate genes and the positive and adverse effects of drug treatment. Approximately 18% of neuroleptics are major substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4. About 10% - 20% of Western populations are defective in genes of the CYP superfamily. Only 26% of Southern Europeans are pure extensive metabolizers for the trigenic cluster integrated by the CYP2D6 + CYP2C19 + CYP2C9 genes. Efficacy and safety issues in the pharmacological treatment of SCZ are directly linked to genetic clusters involved in the pharmacogenomics of antipsychotic drugs and also to environmental factors. Consequently, the incorporation of pharmacogenomic procedures both to drugs under development and drugs on the market would help to optimize therapeutics in SCZ and other central nervous system disorders.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Cacabelos, R. , Cacabelos, P. and Aliev, G. (2013) Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. Open Journal of Psychiatry, 3, 46-139. doi: 10.4236/ojpsych.2013.31008.


[1] Cacabelos, R., Fernández-Novoa, L., Lombardi, V., Carril, J.C., Corzo, L., Carrera, I., Tellado, I., Martínez, R., McKay, A. and Takeda, M. (2011) Genomics of schizophrenia and psychotic disorders. The EuroEspes Journal: Gen-T 3, 6-86.
[2] Cacabelos, R., Martínez-Bouza, R., Carril, J.C., Fernández-Novoa, L., Lombardi, V., Carrera, I., Corzo, L. and McKay, A. (2012) Genomics and pharmacogenomics of brain disorders. Current Pharmaceutical Biotechnology, 13, 674-725. doi:10.2174/138920112799857576
[3] Andlin-Sobocki, P., Jonsson, B., Wittchen, H.-U. and Olesen, J. (2005) Costs of disorders of the brain in Europe. European Journal of Neurology, 12, 1-27.
[4] Cacabelos, R. (2008) Pharmacogenomics in Alzheimer disease. Methods in Molecular Biology, 448, 213-357. doi:10.1007/978-1-59745-205-2_10
[5] Cacabelos, R. (2009) Pharmacogenomic biomarkers in neuropsychiatry: The path to personalized medicine in mental disorders. In: Ritsner, M.S., Ed., The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes, Springer, Berlin, 3-63. doi:10.1007/978-90-481-2298-1_1
[6] Cacabelos, R., Martínez, R., Fernández-Novoa, L., Carril, J.C., Lombardi, V., Carrera, I., Corzo, L., Tellado, I., Leszek, J., McKay, A. and Takeda, M. (2012) Genomics of dementia: APOE-and CYP2D6-Related pharmacogenetics. International Journal of Alzheimer disease, 2012, 37. doi:10.1155/2012/518901
[7] Malhotra, A.K., Lencz, T., Correll, C.U. and Kane, J.M. (2007) Genomics and the future of pharmacotherapy in psychiatry. International Review of Psychiatry, 19, 523-530. doi:10.1080/09540260701563460
[8] Zhou, S.F., Di, Y.M., Chan, E., Du, Y.M., Chow, V.D., Xue, C.C., Lai, X., Wang, J.C., Li, C.G., Tian, M. and Duan, W. (2008) Clinical pharmacogenetics and potential application in personalized medicine. Current Drug Metabolism, 9, 738-784. doi:10.2174/138920008786049302
[9] Cacabelos, R. (2008) Pharmacogenomics and therapeutic prospects in dementia. European Archives of Psychiatry and Clinical Neuroscience, 258, 28-47. doi:10.1007/s00406-007-1006-x
[10] Cacabelos, R. (2007) Pharmacogenetic basis for therapeutic optimization in Alzheimer disease. Molecular Diagnosis & Therapy, 11, 385-405. doi:10.1007/BF03256262
[11] Cacabelos, R. (2007) Molecular pathology and pharmacogenomics in Alzheimer disease: Polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Methods & Findings in Experimental & Clinical Pharmacology, 29, 1-91.
[12] Cacabelos, R. (2005) Pharmacogenomics and therapeutic prospects in Alzheimer disease. Expert Opinion on Pharmacotherapy, 6, 1967-1987. doi:10.1517/14656566.6.12.1967
[13] Cacabelos, R. (2009) Pharmacogenomics and therapeutic strategies for dementia. Expert Review of Molecular Diagnostics, 9, 567-611. doi:10.1586/erm.09.42
[14] Cacabelos, R., Fernández-Novoa, L., Martínez-Bouza, R., McKay, A., Carril, J.C., Lombardi, V., Corzo, L., Carrera, I., Tellado, I., Nebril, L., Alcaraz, M., Rodríguez, S., Casas, A., Couceiro, V. and Alvarez, A. (2010) Future trends in the pharmacogenomics of brain disorders and dementia: Influence of APOE and CYP2D6 variants. Pharmaceuticals, 3, 3040-3100. doi:10.3390/ph3103040
[15] Claes, S., Tang, Y.L., Gillespie, C.F. and Cubells, J.F. (2012) Human genetics of schizophrenia. Handbook of Clinical Neurology, 106, 37-52. doi:10.1016/B978-0-444-52002-9.00003-6
[16] Boshes, R.A., Manschreck, T.C. and Konigsberg, W. (2012) Genetics of the schizophrenias: A model accounting for their persistence and myriad phenotypes. Harvard Review of Psychiatry, 20, 119-129. doi:10.3109/10673229.2012.694321
[17] Cacabelos, R. and Martínez-Bouza, R. (2010) Genomics and pharmacogenomics of schizophrenia. CNS Neuroscience & Therapeutics, 17, 541-565. doi:10.111_j.1755-5949.2010.00187
[18] Howes, O.D. and Kapur, S. (2009) The dopamine hypothesis of schizophrenia: Version III—the final common pathway. Schizophrenia Bulletin, 35, 549-562. doi:10.1093/schbul/sbp006
[19] Bennett, M. (2009) Positive and negative symptoms in schizophrenia: The NMDA receptor hypofunction hypothesis, neuregulin/ErbB4 and synapse regression. Australian & New Zealand Journal of Psychiatry, 43, 711-721. doi:10.1080/00048670903001943
[20] Fatemi, S.H. and Folsom, T.D. (2009) The neuro-developmental hypothesis of schizophrenia, revisited. Schizophrenia Bulletin, 35, 528-548. doi:10.1093/schbul/sbn187
[21] Dean, B. (2009) Is schizophrenia the price of human central nervous system complexity? Australian & New Zealand Journal of Psychiatry, 43, 13-24. doi:10.1080/00048670802534416
[22] Teo, C., Zai, C., Borlido, C., Tomasetti, C., Strauss, J., Shinkai, T., Le Foll, B., Wong, A., Kennedy, J.L. and De Luca, V. (2012) Analysis of treatment-resistant schizophrenia and 384 markers from candidate genes. Pharmacogenet Genomics, 22, 807-811. doi:10.1097/FPC.0b013e3283586c04
[23] Ingelman-Sundberg, M., Sim, S.C., Gomez, A. and Rodríguez-Antona, C. (2007) Influence of cytochrome P450 polymorphisms on drug therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacology & Therapeutics, 116, 496-526. doi:10.1016/j.pharmthera.2007.09.004
[24] National Center for Biotechnology Information (2012) Online Mendelian Inheritance in Man.
[25] Cacabelos, R. (2012) World guide for drug use and pharmacogenomics. EuroEspes Publishing, Corunna.
[26] Xie, H.G., Kim, R.B., Wood, A.J. and Stein, C.M. (2001) Molecular basis of ethnic differences in drug disposition and response. Annual Reviews, Pharmacology and Toxicology, 41, 815-850. doi:10.1146/annurev.pharmtox.41.1.815
[27] Isaza, C.A., Henao, J., López, A.M. and Cacabelos, R. (2000) Isolation, sequence and genotyping of the drug metabolizer CYP2D6 gene in the Colombian population. Methods & Findings in Experimental & Clinical Pharmacology, 22, 695-705. doi:10.1358/mf.2000.22.9.802286
[28] Mizutani, T. (2003) PM frequencies of major CYPs in Asians and Caucasians. Drug Metabolism Reviews, 35, 99-106. doi:10.1081/DMR-120023681
[29] Ozawa, S., Soyama, A., Saeki, M., Fukushima-Uesaka, H., Itoda, M., Koyano, S., Sai, K., Ohno, Y., Saito, Y. and Sawada, J. (2004) Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metabolism and Pharmacokinetics, 19, 83-95. doi:10.2133/dmpk.19.83
[30] Weinshilboum, R.M. and Wang, L. (2006) Pharmacogenetics and pharmacogenomics: Development, science, and translation. Annual Reviews, Genomics and Human Genetics, 7, 223-245. doi:10.1146/annurev.genom.6.080604.162315
[31] Marquez, B. and van Bambeke, F. (2011) ABC multidrug transporters: Target for modulation of drug pharmacokinetics and drug-drug interactions. Current Drug Targets, 12, 600-620. doi:10.2174/138945011795378504
[32] Haufroid, V. (2011) Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition. Current Drug Targets, 12, 631-646. doi:10.2174/138945011795378487
[33] Hosoya, K. and Tachikawa, M. (2011) Roles of organic anion/cation transporters at the blood-brain and bloodcerebrospinal fluid barriers involving uremic toxins. Clinical and Experimental Nephrology, 15, 478-485. doi:10.1007/s10157-011-0460-y
[34] Carl, S.M., Lindley, D.J., Couraud, P.O., Weksler, B.B., Romero, I., Mowery, S.A. and Knipp, G.T. (2010) ANC and SLC transporter expression and pot substrate characterization across the human CMEC/D3 blood-brain barrier cell line. Molecular Pharmaceutics, 7, 1057-1068. doi:10.1021/mp900178j
[35] Cacabelos, R., Fernández-Novoa, L., Lombardi, V., Kubota, Y. and Takeda, M. (2005) Molecular genetics of Alzheimer disease and aging. Methods & Findings in Experimental & Clinical Pharmacology, 27, 1-573.
[36] Chen, L.S., Rice, T.K., Thompson, P.A., Barch, D.M. and Csernansky, J.G. (2009) Familial aggregation of clinical and neurocognitive features in sibling pairs with and without schizophrenia. Schizophrenia Research, 111, 159-166. doi:10.1016/j.schres.2009.03.030
[37] Lichtenstein, P., Yip, B.H., Bjork, C., Pawitan, Y., Cannon, T.D., Sullivan, P.F. and Hultman, C.M. (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. The Lancet, 373, 234-239. doi:10.1016/S0140-6736(09)60072-6
[38] Wiener, H.W., Klei, L., Irvin, M.D., Perry, R.T., Aliyu, M.H., Allen, T.B., Bradford, L.D., Calkins, M.E., Devlin, B., Edwards, N., Gur, R.E., Gur, R.C., Kwentus, J., Lyons, P.D., McEvoy, J.P., Nasrallah, H.A., Nimgaonkar,V.L., O’Jile, J., Santos, A.B., Savage, R.M. and Go, R.C. (2009) Linkage analysis of schizophrenia in African-American families. Schizophrenia Research, 109, 70-79. doi:10.1016/j.schres.2009.02.007
[39] Holmans, P.A., Riley, B., Pulver, A.E., Owen, M.J., Wildenauer, D.B., Gejman, P.V., Mowry, B.J., Laurent, C., Kendler, K.S., Nestadt, G., Williams, N.M., Schwab, S.G., Sanders, A.R., Nertney, D., Mallet, J., Wormley, B., Lasseter, V.K., O’Donovan, M.C., Duan, J., Albus, M., Alexander. M., Godard, S., Ribble, R., Liang, K.Y., Norton, N., Maier, W., Papadimitriou, G., Walsh, D., Jay, M., O’Neill, A., Lerer, F.B., Dikeos, D., Crowe, R.R., Silverman, J.M. and Levinson, D.F. (2009) Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Molecular Psychiatry, 14, 786-795. doi:10.1038/mp.2009.11
[40] Escamilla, M., Hare, E., Dassori, A.M., Peralta, J.M., Ontiveros, A., Nicolini, H., Raventós, H., Medina, R., Mendoza, R., Jerez, A., Munoz, R. and Almasy, L. (2009) A schizophrenia gene locus on chromosome 17q21 in a new set of families of Mexican and central American ancestry: Evidence from the NIMH genetics of schizophrenia in Latino populations study. The American Journal of Psychiatry, 166, 442-449. doi:10.1176/appi.ajp.2008.08040612
[41] Mefford, H.C. and Eichler, E.E. (2009) Duplication hotspots, rare genomic disorders, and common disease. Current Opinion in Genetics & Development, 19, 196-204. doi:10.1016/j.gde.2009.04.003
[42] Sun, J., Han, L. and Zhao, Z. (2010) Geneand evidence-based candidate gene selection for schizophrenia and gene feature analysis. Artificial Intelligence in Medicine, 48, 99-106. doi:10.1016/j.artmed.2009.07.009
[43] Le Strat, Y., Ramoz, N. and Gorwood, P. (2009) The role of genes involved in neuroplasticity and neurogenesis in the observation of a gene-environment interaction (GxE) in schizophrenia. Current Molecular Medicine, 9, 506-518. doi:10.2174/156652409788167104
[44] Jonsson, E.G., Saetre, P., Vares, M., Andreou, D., Larsson, K., Timm, S., Rasmussen, H.B., Djurovic, S., Melle, I., Andreassen, O.A., Agartz, I., Werge, T., Hall, H. and Terenius, L. (2009) DTNBP1, NRG1, DAOA, DAO and GRM3 polymorphisms and schizophrenia: An association study. Neuropsychobiology, 59, 142-150.
[45] Psychiatric GWAS Consortium Coordinating Committee, Cichon, S., Craddock, N., Daly, M., Faraone, S.V., Gejman, P.V., Kelsoe, J., Lehner, T., Levinson, D.F., Moran, A., Sklar, P. and Sullivan, P.F. (2009) Genomewide association studies: History, rationale, and prospects for psychiatric disorders. The American Journal of Psychiatry, 166, 540-556. doi:10.1176/appi.ajp.2008.08091354
[46] Psychiatric GWAS Consortium Steering Committee, (2009) A framework for interpreting genome-wide association studies of psychiatric disorders. Molecular Psychiatry, 14, 10-17. doi:10.1038/mp.2008.126
[47] Hamshere, M.L., Walters, J.T., Smith, R., Richards, A.L., Green, E., Grozeva, D., Jones, I., Forty, L., Jones, L., Gordon-Smith, K., Riley, B., O’Neill, T., Kendler, K.S., Sklar, P., Purcell, S., Kranz, J., The schizophrenia Psychiatric Genome-Wide Association Study Consortium (PGC), Wellcome Trust Case Control Consortium+ (WTCCC+), Wellcome Trust Case Control Consortium 2 (WTCCC2), Morris, D., Gill, M., Holmans, P., Craddock, N., Corvin, A., Wwen, M.J. and O’Donovan, M.C. (2012) Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Molecular Psychiatry. doi:10.1038/mp.2012.67
[48] Bergen, S.E., O’Dushlaine, C.T., Ripke, S., Lee, P.H., Ruderfer, D.M., Akterin, S., Moran, J.L., Chambert, K.D., Handsaker, R.E., Backlund, L., Osby, U., McCarroll, S., Landen, M., Scolnick, E.M., Magnusson, P.K., Lichtenstein, P., Hultman, C.M., Purcell, S.M., Sklar, P. and Sullivan, P.F. (2012) Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Molecular Psychiatry, 17, 880-886. doi:10.1038/mp.2012.73
[49] O’Donovan, M.C., Craddock, N.J. and Owen, M.J. (2009) Genetics of psychosis; insights from views across the genome. Human Genetics, 126, 3-12. doi:10.1007/s00439-009-0703-0
[50] Ng, M.Y., Levinson, D.F., Faraone, S.V., Suarez, B.K., DeLisi, L.E., Arinami, T., Riley, B., Paunio, T., Pulver, A.E., Irmansyah, Holmans, P.A., Escamilla, M., Wildenauer, D.B., Williams, N.M., Laurent, C., Mowry, B.J., Brzustowicz, L.M., Maziade, M., Sklar, P., Garver, D.L., Abecasis, G.R., Lerer, B., Fallin, M.D., Gurling, H.M., Gejman, P.V., Lindholm, E., Moises, H.W., Byerley, W., Wijsman, E.M., Forabosco, P., Tsuang, M.T., Hwu, H.G., Okazaki, Y., Kendler, K.S., Wormley, B., Fanous, A., Walsh, D., O’Neill, F.A., Peltonen, L., Nestadt, G., Lasseter, V.K., Liang, K.Y., Papadimitriou, G.M., Dikeos, D.G., Schwab, S.G., Owen, M.J., O’Donovan, M.C., Norton, N., Hare, E., Raventos, H., Nicolini, H., Albus, M., Maier, W., Nimgaonkar, V.L., Terenius, L., Mallet, J., Jay, M., Godard, S., Nertney, D., Alexander, M., Crowe, R.R., Silverman, J.M., Bassett, A.S., Roy, M.A., Mérette, C., Pato, C.N., Pato, M.T., Roos, J.L., Kohn, Y., Amann-Zalcenstein, D., Kalsi, G., McQuillin, A., Curtis, D., Brynjolfson, J., Sigmundsson, T., Petursson, H., Sanders, A.R., Duan, J., Jazin, E., Myles-Worsley, M., Karayiorgou, M. and Lewis, C.M. (2009) Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Molecular Psychiatry, 14, 774-785. doi:10.1038/mp.2008.135
[51] Moskvina, V., Craddock, N., Holmans, P., Nikolov, I., Pahwa, J.S., Green, E., Wellcome Trust Case Control Consortium, Owen, M.J. and O’Donovan, M.C. (2009) Gene-wide analyses of genome-wide association data sets: Evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Molecular Psychiatry, 14, 252-260. doi:10.1038/mp.2008.133
[52] Knight, H.M., Pickard, B.S., Maclean, A., Malloy, M.P., Soares, D.C., McRae, A.F., Condie, A., White, A., Hawkins, W., McGhee, K., van Beck, M., MacIntyre, D.J., Starr, J.M., Deary, I.J., Visscher, P.M., Porteous, D.J., Cannon, R.E., St Clair, D., Muir, W.J., Blackwood, D.H. (2009) A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. The American Journal of Human Genetics, 85, 833-846. doi:10.1016/j.ajhg.2009.11.003
[53] Ingason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H.B., Nielsen, J., Jürgens, G., Muglia, P., Hartmann, A.M., Strengman, E., Vasilescu, C., Mühleisen, T.W., Djurovic, S., Melle, I., Lerer, B., M?ller, H.J., Francks, C., Pietilainen, O.P., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Walshe, M., Vassos, E., Di Forti, M., Murray, R., Bonetto, C., Tosato, S.; GROUP Investigators, Cantor, R.M., Rietschel, M., Craddock, N., Owen, M.J., Peltonen, L., Andreassen, O.A., Nothen, M.M., St Clair, D., Ophoff, R.A., O’Donovan, M.C., Collier, D.A., Werge, T., Rujescu, D. (2010) A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 19, 1379-1386. doi:10.1093/hmg/ddq009
[54] Ikeda, M., Tomita, Y., Mouri, A., Koga, M., Okochi, T., Yoshimura, R., Yamanouchi, Y., Kinoshita, Y., Hashimoto, R., Williams, H.J., Takeda, M., Nakamura, J., Nabeshima, T., Owen, M.J., O’Donovan, M.C., Honda, H., Arinami, T., Ozaki, N., Iwata, N. (2010) Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: Integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biological Psychiatry, 67, 263-269. doi:10.1016/j.biopsych.2009.08.030
[55] Rivero, O., Reif, A., Sanjuán, J., Moltó, M.D., Kittel-Schneider, S., Nájera, S., Topner, T. and Lesch, K.P. (2010) Impact of the AHI1 gene on the vulnerability to schizophrenia: A case-control association study. PLoS One, 5, e12254. doi:10.1371/journal.pone.0012254
[56] Zhang, F., Xu, Y., Liu, P., Fan, H., Huang, X., Sun, G., Song, Y. and Sham, P.C. (2008) Association analyses of the interaction between the ADSS and ATM genes with schizophrenia in a Chinese population. BMC Medical Genetics, 9, 119. doi:10.1186/1471-2350-9-119
[57] Yamaguchi, W., Shinkai, T., Inoue, Y., Utsunomiya, K., Sakata, S., Fukunaka, Y., Yamada, K., Chen, H.I., Hwang, R., Ohmori, O. and Nakamura, J. (2009) Association analysis between the C-1291G polymorphism in the promoter region of the adrenergic alpha2A receptor gene and polydipsia in schizophrenia. Progress in Neuro-Psychopharmacology Biological Psychiatry, 33, 499-502. doi:10.1016/j.pnpbp.2009.01.012
[58] Wan, C., Shi, Y., Zhao, X., Tang, W., Zhang, M., Ji, B., Zhu, H., Xu, Y., Li, H., Feng, G. and He, L. (2009) Positive association between ALDH1A2 and schizophrenia in the Chinese population. Progress in Neuro-Psychopharmacology Biological Psychiatry, 33, 1491-1495. doi:10.1016/j.pnpbp.2009.08.008
[59] Noori-Daloii, M.R., Kheirollahi, M., Mahbod, P., Mohammadi, F., Astaneh, A.N., Zarindast, M.R., Azimi, C. and Mohammadi, M.R. (2010) Alpha-and beta-synucleins mRNA expression in lymphocytes of schizophrenia patients. Genetic Testing and Molecular Biomarkers, 14, 725-729. doi:10.1089/gtmb.2010.0050
[60] Kucukali, C.I., Aydin, M., Ozkok, E., Bilge, E., Zengin, A., Cakir, U. and Kara, I. (2010) Angiotensin-converting enzyme polymorphism in schizophrenia, bipolar disorders, and their first-degree relatives. Psychiatric Genetics, 20, 14-19. doi:10.1097/YPG.0b013e3283351194
[61] Hashimoto, R., Ohi, K., Okada, T., Yasuda, Y., Yamamori, H., Hori, H., Hikita, T., Taya, S., Saitoh, O., Kosuga, A., Tatsumi, M., Kamijima, K., Kaibuchi, K., Takeda, M., and Kunugi, H. (2009) Association analysis between schizophrenia and the AP-3 complex genes. Neuroscience Research, 65, 113-115. doi:10.1016/j.neures.2009.05.008
[62] Vik-Mo, A.O., Ferno, J., Skrede, S. and Steen, V.M. (2009) Psychotropic drugs up-regulate the expression of cholesterol transport proteins including ApoE in cultured human CNS-and liver cells. BMC Pharmacology, 9, 10. doi:10.1186/1471-2210-9-10
[63] Chen, X., Sun, C., Chen, Q., O’Neill, F.A., Walsh, D., Fanous, A.H., Chowdari, K.V., Nimgaonkar, V.L., Scott, A., Schwab, S.G., Wildenauer, D.B., Che, R., Tang, W., Shi, Y., He, L., Luo, X.J., Su, B., Edwards, T.L., Zhao, Z. and Kendler, K.S. (2009) Apoptotic engulfment pathway and schizophrenia. PLoS One, 4, e6875. doi:10.1371/journal.pone.0006875
[64] Levin, R., Heresco-Levy, U., Bachner-Melman, R., Israel, S., Shalev, I. and Ebstein, R.P. (2009) Association between arginine vasopressin 1a receptor (AVPR1a) promoter region polymorphisms and prepulse inhibition. Psychoneuroendocrinology, 34, 901-908. doi:10.1016/j.psyneuen.2008.12.014
[65] Israel, S., Lerer, E., Shalev, I., Uzefovsky, F., Reibold, M., Bachner-Melman, R., Granot, R., Bornstein, G., Knafo, A., Yirmiya, N. and Ebstein, R.P. (2008) Molecular genetic studies of the arginine vasopressin 1a receptor (AVPR1a) and the oxytocin receptor (OXTR) in human behaviour: From autism to altruism with some notes in between. Progress in Brain Research, 170, 435-449. doi:10.1016/S0079-6123(08)00434-2
[66] Hammock, E.A. and Young, L.J. (2006) Oxytocin, vasopressin and pair bonding: Implications for autism. Philosophical Transactions of the Royal Society B Biological Sciences, 361, 2187-2198. doi:10.1098/rstb.2006.1939
[67] Liou, Y.J., Wang, Y.C., Chen, J.Y., Chen, M.L., Chen, T.T., Bai, Y.M., Lin, C.C., Liao, D.L., Lai, I.C. (2008) The coding-synonymous polymorphism rs1045280 (Ser280Ser) in beta-arrestin 2 (ARRB2) gene is associated with tardive dyskinesia in Chinese patients with schizophrenia. European Journal of Neurology, 15, 1406-1408. doi:10.1111/j.1468-1331.2008.02316.x
[68] Ohi, K., Hashimoto, R., Yasuda, Y., Yamamori, H., Hori, H., Saitoh, O., Tatsumi, M., Takeda, M., Iwata, N., Ozaki, N., Kamijima, K. and Kunugi, H. (2009) No association between the Bcl2-interacting killer (BIK) gene and schizophrenia. Neuroscience Letters, 463, 60-63. doi:10.1016/j.neulet.2009.07.063
[69] Cheli, V.T., Daniels, R.W., Godoy, R., Hoyle, D.J., Kandachar, V., Starcevic, M., Martinez-Agosto, J.A., Poole, S., DiAntonio, A., Lloyd, V.K., Chang, H.C., Krantz, D.E. and Dell’Angelica, E.C. (2009) Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency. Human Molecular Genetics, 19, 861-878. doi:10.1093/hmg/ddp555
[70] Kawashima, K., Ikeda, M., Kishi, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., Okochi, T., Aleksic, B., Tomita, M., Okada, T., Kunugi, H., Inada, T., Ozaki, N. and Iwata, N. (2009) BDNF is not associated with schizophrenia: Data from a Japanese population study and meta-analysis. Schizophrenia Research, 112, 72-79. doi:10.1016/j.schres.2009.03.040
[71] Chang, H.A., Lu, R.B., Shy, M.J., Chang, C.C., Lee, M.S. and Huang, S.Y. (2009) Brain-derived neurotrophic factor Val66Met polymorphism: Association with psychopathological symptoms of schizophrenia? The Journal of Neuropsychiatry & Clinical Neurosciences, 21, 30-37. doi:10.1176/appi.neuropsych.21.1.30
[72] Lencz, T., Lipsky, R.H., DeRosse, P., Burdick, K.E., Kane, J.M. and Malhotra, A.K. (2009) Molecular differentiation of schizoaffective disorder from schizophrenia using BDNF haplotypes. The British Journal of Psychiatry, 194, 313-318. doi:10.1192/bjp.bp.108.050401
[73] Wong, J., Webster, M.J., Cassano, H. and Weickert, C.S. (2009) Changes in alternative brain-derived neurotrophic factor transcript expression in the developing human prefrontal cortex. European Journal of Neuroscience, 29, 1311-1322. doi:10.1111/j.1460-9568.2009.06669.x
[74] Dunham, J.S., Deakin, J.F., Miyajima, F., Payton, A. and Toro, C.T. (2009) Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. Journal of Psychiatric Research, 43, 1175-1184. doi:10.1016/j.jpsychires.2009.03.008
[75] Park, S.W., Lee, J.G., Kong, B.G., Lee, S.J., Lee, C.H., Kim, J.I. and Kim, Y.H. (2009) Genetic association of BDNF Val66Met and GSK-3beta-50T/C polymorphisms with tardive dyskinesia. Psychiatry and Clinical Neurosciences, 63, 433-439. doi:10.1111/j.1440-1819.2009.01976.x
[76] Nyegaard, M., Severinsen, J.E., Als, T.D., Hedemand, A., Straarup, S., Nordentoft, M., McQuillin, A., Bass, N., Lawrence, J., Thirumalai, S., Pereira, A.C., Kandaswamy, R., Lydall, G.J., Sklar, P., Scolnick, E., Purcell, S., Curtis, D., Gurling, H.M., Mortensen, P.B., Mors, O. and Borglum, A.D. (2010) Support of association between BRD1 and both schizophrenia and bipolar affective disorder. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 153B, 582-591.
[77] Green, E.K., Grozeva, D., Jones, I., Jones, L., Kirov, G., Caesar, S., Gordon-Smith, K., Fraser, C., Forty, L., Russell, E., Hamshere, M.L., Moskvina, V., Nikolov, I., Farmer, A., McGuffin, P., Wellcome Trust Case Control Consortium, Holmans, P.A., Owen, M.J., O’Donovan, M.C. and Craddock, N. (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry, 15, 1016-1022. doi:10.1038/mp.2009.49
[78] McMahon, F.J., Akula, N., Schulze, T.G., Muglia, P., Tozzi, F., Detera-Wadleigh, S.D., Steele, C.J., Breuer, R., Strohmaier, J., Wendland, J.R., Mattheisen, M., Mühleisen, T.W., Maier, W., Nothen, M.M., Cichon, S., Farmer, A., Vincent, J.B., Holsboer, F., Preisig, M., Rietschel, M., Bipolar Disorder and Genome Study (BiGS) Consortium. (2010) Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nature Genetics, 42, 128-131. doi:10.1038/ng.523
[79] Bigos, K.L., Mattay, V.S., Callicott, J.H., Straub, R.E., Vakkalanka, R., Kolachana, B., Hyde, T.M., Lipska, B.K., Kleinman, J.E. and Weinberger, D.R. (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Archives of General Psychiatry, 67, 939-945. doi:10.1001/archgenpsychiatry.2010.96
[80] Farokhashtiani, T., Mirabzadeh, A., Olad Nabi, M., Magham, Z.G, Khorshid, H.R., Najmabadi, H. and Ohadi, M. (2010) Reversion of the human calreticulin gene promoter to the ancestral type as a result of a novel psychosis-associated mutation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 541-544. doi:10.1016/j.pnpbp.2010.12.012
[81] Ishiguro, H., Horiuchi, Y., Ishikawa, M., Koga, M., Imai, K., Suzuki, Y., Morikawa, M., Inada, T., Watanabe, Y., Takahashi, M., Someya, T., Ujike, H., Iwata, N., Ozaki, N., Onaivi, E.S., Kunugi, H., Sasaki, T., Itokawa, M., Arai, M., Niizato, K., Iritani, S., Naka, I., Ohashi, J., Kakita, A., Takahashi, H., Nawa, H. and Arinami, T. (2010) Brain cannabinoid CB2 receptor in schizophrenia. Biological Psychiatry, 67, 974-982. doi:10.1016/j.biopsych.2009.09.024
[82] Lendeckel, U., Kahne, T., Ten Have, S., Bukowska, A., Wolke, C., Bogerts, B., Keilhoff, G. and Bernstein, H.G. (2009) Cathepsin K generates enkephalin from beta-endorphin: A new mechanism with possible relevance for schizophrenia. Neurochemistry International, 54, 410-417. doi:10.1016/j.neuint.2009.01.011
[83] Minato, T., Tochigi, M., Kato, N. and Sasaki, T. (2007) Association study between the cholecystokinin A recaptor gene and schizophrenia in the Japanese population. Psychiatric Genetics, 17, 117-119. doi:10.1097/YPG.0b013e328011c02e
[84] Sinkus, M.L., Lee, M.J., Gault, J., Logel, J., Short, M., Freedman, R., Christian, S.L., Lyon, J. and Leonard, S. (2009) A 2-base pair deletion polymorphism in the partial duplication of the alpha7 nicotinic acetylcholine gene (CHRFAM7A) on chromosome 15q14 is associated with schizophrenia. Brain Research, 1291, 1-11. doi:10.1016/j.brainres.2009.07.041
[85] Stephens, S.H., Logel, J., Barton, A., Franks, A., Schultz, J., Short, M., Dickenson, J., James, B., Fingerlin, T.E., Wagner, B., Hodgkinson, C., Graw, S., Ross, R.G., Freedman, R. and Leonard, S. (2009) Association of the 5’-upstream regulatory region of the alpha7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizophrenia Research, 109, 102-112. doi:10.1016/j.schres.2008.12.017
[86] Kishi, T., Kitajima, T., Ikeda, M., Yamanouchi, Y., Kinoshita, Y., Kawashima, K., Okochi, T., Okumura, T., Tsunoka, T., Inada, T., Ozaki, N. and Iwata, N. (2009) Association study of clock gene (CLOCK) and schizophrenia and mood disorders in the Japanese population. European Archives of Psychiatry and Clinical Neuroscience, 259, 293-297. doi:10.1007/s00406-009-0869-4
[87] Zhou, Y., Wang, J., Wang, K., Li, S., Song, X., Ye, Y., Wang, L. and Ying, B. (2010) Association analysis between the rs11136000 single nucleotide polymorphism in clusterin gene, rs3851179 single nucleotide polymorphism in clathrin assembly lymphoid myeloid protein gene and the patients with schizophrenia in the Chinese population. DNA and Cell Biology, 29, 745-751. doi:10.1089/dna.2010.1075
[88] Chen, X., Lee, G., Maher, B.S., Fanous, A.H., Chen, J., Zhao, Z., Guo, A., van den Oord, E., Sullivan, P.F., Shi, J., Levinson, D.F., Gejman, P.V., Sanders, A., Duan, J., Owen, M.J., Craddock, N.J., O’Donovan, M.C., Blackman, J., Lewis, D., Kirov, G.K., Qin, W., Schwab, S., Wildenauer, D., Chowdari, K., Nimgaonkar, V., Straub, R.E., Weinberger, D.R., O’Neill, F.A., Walsh, D., Bronstein, M., Darvasi, A., Lencz, T., Malhotra, A.K., Rujescu, D., Giegling, I., Werge, T., Hansen, T., Ingason, A., N?ethen, M.M., Rietschel, M., Cichon, S., Djurovic, S., Andreassen, O.A., Cantor, R.M., Ophoff, R., Corvin, A., Morris, D.W., Gill, M., Pato, C.N., Pato, M.T., Macedo, A., Gurling, H.M., McQuillin, A., Pimm, J., Hultman, C., Lichtenstein, P., Sklar, P., Purcell, S.M., Scolnick, E., St Clair, D., Blackwood, D.H., Kendler, K.S.; GROUP investigators and International Schizophrenia Consortium. (2010) GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Moleular Psychiatry, 16, 1117-1129. doi:10.1038/mp.2010.96
[89] Che, R., Tang, W., Zhang, J., Wei, Z., Zhang, Z., Huang, K., Zhao, X., Gao, J., Zhou, G., Huang, P., He, L. and Shi, Y. (2009) No relationship between 2’,3’-cyclic nucleotide 3’-phosphodiesterase and schizophrenia in the Chinese Han population: An expression study and meta-analysis. BMC Medical Genetics, 10, 31. doi:10.1186/1471-2350-10-31
[90] Zweier, C., de Jong, E.K., Zweier, M., Orrico, A., Ousager, L.B., Collins, A.L., Bijlsma, E.K., Oortveld, M.A., Ekici, A.B., Reis, A., Schenck, A. and Rauch, A. (2009) CNTNAP2 and NRXN1 are mutated in autosomal-recessive pitt-hopkins-like mental retardation and determine the level of a common synaptic protein in drosophila. The American Journal of Human Genetics, 85, 655-666. doi:10.1016/j.ajhg.2009.10.004
[91] Begemann, M., Grube, S., Papiol, S., Malzahn, D., Krampe, H., Ribbe, K., Friedrichs, H., Radyushkin, K.A., El-Kordi, A., Benseler, F., Hannke, K., Sperling, S., Schwerdtfeger, D., Thanhauser, I., Gerchen, M.F., Ghorbani, M., Gutwinski, S., Hilmes, C., Leppert, R., Ronnenberg, A., Sowislo, J., Stawicki, S., Stodtke, M., Szuszies, C., Reim, K., Riggert, J., Eckstein, F., Falkai, P., Bickeboller, H., Nave, K.A., Brose, N. and Ehrenreich, H. (2010) Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Archives of General Psychiatry, 67, 879-888. doi:10.1001/archgenpsychiatry.2010.107
[92] Rutherford, K. and Daggett, V. (2009) A hotspot of inactivation: The A22S and V108M polymorphisms individually destabilize the active site structure of catechol O-methyltransferase. Biochemistry, 48, 6450-6460. doi:10.1021/bi900174v
[93] Williams, H.J., Owen, M.J. and O’Donovan, M.C. (2007) Is COMT a susceptibility gene for schizophrenia? Schizophrenia Bulletin, 33, 635-641. doi:10.1093/schbul/sbm019
[94] Fan, J.B., Zhang, C.S., Gu, N.F., Li, X.W., Sun, W.W., Wang, H.Y., Feng, G.Y., St Clair, D. and He, L. (2005) Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: A large-scale association study plus meta-analysis. Biological Psychiatry, 57, 139-144. doi:10.1016/j.biopsych.2004.10.018
[95] Zhang, F., Liu, C., Chen, Y., Wang, L., Lu, T., Yan, H., Ruan, Y., Yue, W. and Zhang, D. (2012) No association of catechol-O-methyltransferase polymorphisms with schizophrenia in the Han Chinese population. Genetic Testing and Molecular Biomarkers, 16, 1138-1141. doi:10.1089/gtmb.2012.0061
[96] Okochi, T., Ikeda, M., Kishi, T., Kawashima, K., Kinoshita, Y., Kitajima, T., Yamanouchi, Y., Tomita, M., Inada, T., Ozaki, N. and Iwata, N. (2009) Meta-analysis of association between genetic variants in COMT and schizophrenia: An update. Schizophrenia Research, 110, 140-148. doi:10.1016/j.schres.2009.02.019
[97] Weinberger, D.R. (2005) Genetic mechanisms of psychosis: In vivo and post-mortem genomics. Clinical Therapeutics, 27, S8-S15. doi:10.1016/j.clinthera.2005.07.016
[98] Srivastava, V., Deshpande, S.N. and Thelma, B.K. (2009) Dopaminergic pathway gene polymorphisms and genetic susceptibility to schizophrenia among north Indians. Neuropsychobiology, 61, 64-70. doi:10.1159/000265131
[99] Park, B.L., Shin, H.D., Cheong, H.S., Park, C.S., Sohn, J.W., Kim, B.J., Seo, H.K., Kim, J.W., Kim, K.H., Shin, T.M., Choi, I.G., Kim, S.G. and Woo, S.I. (2009) Association analysis of COMT polymorphisms with schizophrenia and smooth pursuit eye movement abnormality. Journal of Human Genetics, 54, 709-712. doi:10.1038/jhg.2009.102
[100] Gu, Y., Yun, L., Tian, Y. and Hu, Z. (2009) Association between COMT gene and Chinese male schizophrenic patients with violent behavior. Medical Science Monitor, 15, CR484-9.
[101] Neuhaus, A.H., Opgen-Rhein, C., Urbanek, C., Hahn, E., Ta, T.M., Seidelsohn, M., Strathmann, S., Kley, F., Wieseke, N., Sander, T. and Dettling, M. (2009) COMT Val 158 Met polymorphism is associated with cognitive flexibility in a signal discrimination task in schizophrenia. Pharmacopsychiatry, 42, 141-144. doi:10.1055/s-0028-1112132
[102] Takizawa, R., Tochigi, M., Kawakubo, Y., Marumo, K., Sasaki, T., Fukuda, M. and Kasai, K. (2009) Association between catechol-O-methyltrasferase Val108/158Met genotype and prefrontal hemodynamic response in schizophrenia. PLoS One, 4, e5495. doi:10.1371/journal.pone.0005495
[103] Chien, Y.L., Liu, C.M., Fann, C.S., Liu, Y.L. and Hwu, H.G. (2009) Association of the 3’ region of COMT with schizophrenia in Taiwan. Journal of the Formosan Medical Association, 108, 301-309. doi:10.1016/S0929-6646(09)60070-X
[104] Liao, S.Y., Lin, S.H., Liu, C.M., Hsieh, M.H., Hwang, T.J., Liu, S.K., Guo, S.C., Hwu, H.G. and Chen, W.J. (2009) Genetic variants in COMT and neurocognitive impairment in families of patients with schizophrenia. Genes, Brain and Behavior, 8, 228-237. doi:10.1111/j.1601-183X.2008.00467.x
[105] Wang, Y., Hu, Y., Fang, Y., et al. (2009) Evidence of epistasis between the catechol-O-methyltransferase and aldehyde dehydrogenase 3B1 genes in paranoid schizophrenia. Biological Psychiatry, 65, 1048-1054. doi:10.1016/j.biopsych.2008.11.027
[106] Chen, P., Huang, K., Zhou, G., Zeng, Z., Wang, T., Li, B., Wang, Y., He, L., Feng, G. and Shi, Y. (2011) Common SNPs in CSF2RB are associated with major depression and schizophrenia in the Chinese Han population. World Journal of Biological Psychiatry, 12, 233-238. doi:10.3109/15622975.2010.544328
[107] Liu, J., Li, J., Li, T., Wang, T., Li, Y., Zeng, Z., Li, Z., Chen, P., Hu, Z., Zheng, L., Ji, J., Lin, H., Feng, G. and Shi, Y. (2011) CTLA-4 confers a risk of recurrent schizophrenia, major depressive disorder and bipolar disorder in the Chinese Han population. Brain, Behavior, and Immunity, 25, 429-433. doi:10.1016/j.bbi.2010.10.024
[108] Du, J., Xu, Y., Duan, S., Zhang, A., Xuan, J., Wang, L., Yu, L., Wang, H., Li, X., Feng, G., He, L. and Xing, Q. (2009) A case-control association study between the CYP3A4 and CYP3A5 genes and schizophrenia in the Chinese Han population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 1200-1204. doi:10.1016/j.pnpbp.2009.06.023
[109] Ohi, K., Hashimoto, R., Yasuda, Y., Yoshida, T., Takahashi, H., Iike, N., Fukumoto, M., Takamura, H., Iwase, M., Kamino, K., Ishii, R., Kazui, H., Sekiyama, R., Kitamura, Y., Azechi, M., Ikezawa, K., Kurimoto, R., Kamagata, E., Tanimukai, H., Tagami, S., Morihara, T., Ogasawara, M., Okochi, M., Tokunaga, H., Numata, S., Ikeda, M., Ohnuma, T., Ueno, S., Fukunaga, T., Tanaka, T., Kudo, T., Arai, H., Ohmori, T., Iwata, N., Ozaki, N. and Takeda, M. (2009) Association study of the G72 gene with schizophrenia in a Japanese population: A multicenter study. Schizophrenia Research, 109, 80-85. doi:10.1016/j.schres.2009.01.019
[110] Detera-Wadleigh, S.D. and McMahon, F.J. (2006) G72/G30 in schizophrenia and bipolar disorder: Review and metaanalysis. Biological Psychiatry, 60, 106-114. doi:10.1016/j.biopsych.2006.01.019
[111] Gomez, L., Wigg, K., Feng, Y., Kiss, E., Kapornai, K., Tamás, Z., Mayer, L., Baji, I., Daróczi, G., Benák, I., Kothencné, V.O., Dombovári, E., Kaczvinszk, E., Besnyo, M., Gádoros, J., King, N., Székely, J., Kovacs, M., Vetró, A., Kennedy, J.L. and Barr, C.L. (2009) G72/G30 (DAOA) and juvenile-onset mood disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150, 1007-1012. doi:10.1002/ajmg.b.30904
[112] Benzel, I., Kew, J.N., Viknaraja, R., Kelly, F., de Belleroche, J., Hirsch, S., Sanderson, T.H. and Maycox, P.R. (2008) Investigation of G72 (DAOA) expression in the human brain. BMC Psychiatry, 8, 94. doi:10.1186/1471-244X-8-94
[113] Chubb, J.E., Bradshaw, N.J., Soares, D.C., Porteous, D.J. and Millar, J.K. (2008) The DISC locus in psychiatric illness. Molecular Psychiatry, 13, 36-64. doi:10.1038/
[114] Nakata, K., Lipska, B.K., Hyde, T.M., Ye, T., Newburn, E.N., Morita, Y., Vakkalanka, R., Barenboim, M., Sei, Y., Weinberger, D.R. and Kleinman, J.E. (2009) DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proceedings of the National Academy of Sciences of USA, 106, 15873-15878. doi:10.1073/pnas.0903413106
[115] Crepel, A., Breckpot, J., Fryns, J.P., De la Marche, W., Steyaert, J., Devriendt, K. and Peeters, H. (2010) DISC1 duplication in two brothers with autism and mild mental retardation. Clinical Genetics, 77, 389-394. doi:10.1111/j.1399-0004.2009.01318.x
[116] Enomoto, A., Asai, N., Namba, T., Wang, Y., Kato, T., Tanaka, M., Tatsumi, H., Taya, S., Tsuboi, D., Kuroda, K., Kaneko, N., Sawamoto, K., Miyamoto, R., Jijiwa, M., Murakumo, Y., Sokabe, M., Seki, T., Kaibuchi, K. and Takahashi, M. (2009) Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron, 63, 774-787. doi:10.1016/j.neuron.2009.08.015
[117] Kim, J.Y., Duan, X., Liu, C.Y., Jang, M.H., Guo, J.U., Pow-anpongkul, N., Kang, E., Song, H. and Ming, G.L. (2009) DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63, 761-773. doi:10.1016/j.neuron.2009.08.008
[118] Matsuzaki, S. and Tohyama, M. (2007) Molecular mechanism of schizophrenia with reference to disruptedin-schizophrenia 1 (DISC1). Neurochemistry International, 51, 165-172. doi:10.1016/j.neuint.2007.06.018
[119] Millar, J.K., Mackie, S., Clapcote, S.J., Murdoch, H., Pickard, B.S., Christie, S., Muir, W.J., Blackwood, D.H., Roder, J.C., Houslay, M.D. and Porteous, D.J. (2007) Disrupted in schizophrenia 1 and phosphodiesterase 4B: Towards an understanding of psychiatric illness. The Journal of Physiology, 584, 401-405. doi:10.1113/jphysiol.2007.140210
[120] Bradshaw, N.J., Ogawa, F., Antolin-Fontes, B., Chubb, J.E., Carlyle, B.C., Christie, S., Claessens, A., Porteous, D.J. and Millar, J.K. (2008) DISC1, PDE4B, and NDE1 at the centrosome and synapse. Biochemical and Biophysical Research Communications, 377, 1091-1096. doi:10.1016/j.bbrc.2008.10.120
[121] Tomppo, L., Hennah, W., Lahermo, P., Loukola, A., Tuulio-Henriksson, A., Suvisaari, J., Partonen, T., Ekelund, J., Lannqvist, J. and Peltonen, L. (2009) Association between genes of disrupted in schizophrenia 1 (DISC1) interactors and schizophrenia supports the role of the DISC1 pathway in the etiology of major mental illnesses. Biological Psychiatry, 65, 1055-1062. doi:10.1016/j.biopsych.2009.01.014
[122] Drerup, C.M., Wiora, H.M., Topczewski, J. and Morris, J.A. (2009) Disc1 regulates foxd3 and sox10 expression, affecting neural crest migration and differentiation. Development, 136, 2623-2632. doi:10.1242/dev.030577
[123] Takahashi, T., Suzuki, M., Tsunoda, M., Maeno, N., Kawasaki, Y., Zhou, S.Y., Hagino, H., Niu, L., Tsuneki, H., Kobayashi, S., Sasaoka, T., Seto, H., Kurachi, M. and Ozaki, N. (2009) The disrupted-in-schizophrenia-1 Ser704Cys polymorphism and brain morphology in schizophrenia. Psychiatry Research, 172, 128-135. doi:10.1016/j.pscychresns.2009.01.005
[124] Schumacher, J., Laje, G., Abou Jamra, R., Becker, T., Mühleisen, T.W., Vasilescu, C., Mattheisen, M., Herms, S., Hoffmann, P., Hillmer, A.M., Georgi, A., Herold, C., Schulze, T.G., Propping, P., Rietschel, M., McMahon, F.J., Nothen, M.M. and Cichon, S. (2009) The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a metaanalysis across different European populations. Human Molecular Genetics, 18, 2719-2727. doi:10.1093/hmg/ddp204
[125] Zhang, C., Fang, Y., Xie, B., Cheng, W., Du, Y., Wang, D. and Yu, S. (2009) DNA methyltransferase 3B gene increases risk of early onset schizophrenia. Neuroscience Letters, 462, 308-311. doi:10.1016/j.neulet.2009.06.085
[126] Zhubi, A., Veldic, M., Puri, N.V., Kadriu, B., Caruncho, H., Loza, I., Sershen, H., Lajtha, A., Smith, R.C., Guidotti, A., Davis, J.M. and Costa, E. (2009) An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophrenia Research, 111, 115-122. doi:10.1016/j.schres.2009.03.020
[127] Reuter, M., Weber, B., Fiebach, C.J., Elger, C., Montag, C. (2009) The biological basis of anger: Associations with the gene coding for DARPP-32 (PPP1R1B) and with amygdala volume. Behavioural Brain Research, 202, 179-183. doi:10.1016/j.bbr.2009.03.032
[128] Prata, D.P., Mechelli, A., Fu, C.H., Picchioni, M., Toulopoulou, T., Bramon, E., Walshe, M., Murray, R.M., Collier, D.A. and McGuire, P. (2009) Epistasis between the DAT 3’ UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia. Proceedings of the National Academy of Sciences of the USA, 106, 13600-13605. doi:10.1073/pnas.0903007106
[129] Prata, D.P., Mechelli, A., Picchioni, M.M., Fu, C.H., Toulopoulou, T., Bramon, E., Walshe, M., Murray, R.M., Collier, D.A., McGuire, P. (2009) Altered effect of dopamine transporter 3’UTR VNTR genotype on prefrontal and striatal function in schizophrenia. Archives of General Psychiatry, 66, 1162-1172. doi:10.1001/archgenpsychiatry.2009.147
[130] Gupta, M., Chauhan, C., Bhatnagar, P., Gupta, S., Grover, S., Singh, P.K., Purushottam, M., Mukherjee, O., Jain, S., Brahmachari, S.K. and Kukreti, R. (2009) Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. Pharmacogenomics, 10, 277-291. doi:10.2217/14622416.10.2.277
[131] Hattori, E., Nakajima, M., Yamada, K., Iwayama, Y., Toyota, T., Saitou, N. and Yoshikawa, T. (2009) Variable number of tandem repeat polymorphisms of DRD4: Re-evaluation of selection hypothesis and analysis of association with schizophrenia. European Journal of Human Genetics, 17, 793-801. doi:10.1038/ejhg.2008.247
[132] Zai, C.C., Tiwari, A.K., De Luca, V., Müller, D.J., Bulgin, N., Hwang, R., Zai, G.C., King, N., Voineskos, A.N., Meltzer, H.Y., Lieberman, J.A., Potkin, S.G., Remington, G. and Kennedy, J.L. (2009) Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia. European Neuropsychopharmacology, 19, 317-328. doi:10.1016/j.euroneuro.2009.01.001
[133] Zai, C.C., Tiwari, A.K., Basile, V., De Luca, V., Müller, D.J., King, N., Voineskos, A.N., Remington, G., Meltzer, H.Y., Lieberman, J.A., Potkin, S.G. and Kennedy, J.L. (2009) Association study of tardive dyskinesia and five DRD4 polymorphisms in schizophrenia patients. Journal of Pharmacogenomics, 9, 168-174. doi:10.1038/tpj.2009.2
[134] Maher, B.S., Reimers, M.A., Riley, B.P. and Kendler, K.S. (2009) Allelic heterogeneity in genetic association meta-analysis: An application to DTNBP1 and schizophrenia. Human Heredity, 69, 71-79. doi:10.1159/000264445
[135] Dwyer, S., Carroll, L., Mantripragada, K.K., Owen, M.J., O’Donovan, M.C. and Williams, N.M. (2010) Mutation screening of the DTNBP1 exonic sequence in 669 schizophrenics and 710 controls using high-resolution melting analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B, 766-774. doi:10.1002/ajmg.b.31045
[136] Ryder, P.V. and Faundez, V. (2009) Schizophrenia: The “BLOC” may be in the endosomes. Science Signaling, 2, e66. doi:10.1126/scisignal.293pe66
[137] Taneichi-Kuroda, S., Taya, S., Hikita, T., Fujino, Y. and Kaibuchi, K. (2009) Direct interaction of Dysbindin with the AP-3 complex via its mu subunit. Neurochemistry International, 54, 431-438. doi:10.1016/j.neuint.2009.01.014
[138] Hikita, T., Taya, S., Fujino, Y., Taneichi-Kuroda, S., Ohta, K., Tsuboi, D., Shinoda, T., Kuroda, K., Funahashi, Y., Uraguchi-Asaki, J., Hashimoto, R. and Kaibuchi, K. (2009) Proteomic analysis reveals novel binding partners of dysbindin, a schizophrenia-related protein. Journal of Neurochemistry, 110, 1567-1574. doi:10.1111/j.1471-4159.2009.06257.x
[139] Donohoe, G., Frodl, T., Morris, D., Spoletini, I., Cannon, D.M., Cherubini, A., Caltagirone, C., Bossù, P., McDonald, C., Gill, M., Corvin, A.P. and Spalletta, G. (2010) Reduced occipital and prefrontal brain volumes in dysbindin-associated schizophrenia. Neuropsychopharmacology, 35, 368-373. doi:10.1038/npp.2009.140
[140] Pae, C.U., Mandelli, L., De Ronchi, D., Kim, J.J., Jun, T.Y., Patkar, A.A. and Serretti, A. (2009) Dysbindin gene (DTNBP1) and schizophrenia in Korean population. European Archives of Psychiatry and Clinical Neuroscience, 259, 137-142. doi:10.1007/s00406-008-0830-y
[141] Gaysina, D., Cohen-Woods, S., Chow, P.C., Martucci, L., Schosser, A., Ball, H.A., Tozzi, F., Perry, J., Muglia, P., Craig, I.W., McGuffin, P. and Farmer, A. (2009) Association of the dystrobrevin binding protein 1 gene (DTNBP1) in a bipolar case-control study (BACCS). American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150, 836-844. doi:10.1002/ajmg.b.30906
[142] Tan, W., Dean, M. and Law, A.J. (2010) Molecular cloning and characterization of the human ErbB4 gene: Identification of novel splice isoforms in the developing and adult brain. PLoS One, 5, e12924. doi:10.1371/journal.pone.0012924
[143] Wong, J. and Weickert, C.S. (2009) Transcriptional interaction of an estrogen receptor splice variant and ErbB4 suggests convergence in gene susceptibility pathways in schizophrenia. The Journal of Biological Chemisty, 284, 18824-18832. doi:10.1074/jbc.M109.013243
[144] Li, D., Feng, G. and He, L. (2009) Case-control study of association between the functional candidate gene ERBB3 and schizophrenia in Caucasian population. World Journal of Biological Psychiatry, 10, 595-598. doi:10.1080/15622970903304442
[145] McNamara, R.K., Jandacek, R., Rider, T., Tso, P., Hahn, C.G., Richtand, N.M. and Stanford, K.E. (2007) Abnormalities in the fatty acid composition of the post-mortem orbitofrontal cortex of schizophrenic patients: Gender differences and partial normalization with antipsychotic medications. Schizophrenia Research, 91, 37-50. doi:10.1016/j.schres.2006.11.027
[146] Liu, Y., Jandacek, R., Rider, T., Tso, P. and McNamara, R.K. (2009) Elevated delta-6 desaturase (FADS2) expression in the post-mortem prefrontal cortex of schizophrenic patients: Relationship with fatty acid composition. Schizophrenia Research, 109, 113-120. doi:10.1016/j.schres.2008.12.027
[147] Perez-Iglesias, R., Mata, I., Amado, J.A., Berja, A., Garcia-Unzueta, M.T., Martínez, G.O., Arranz, M.J., Vazquez-Barquero, J.L. and Crespo-Facorro, B. (2010) Effect of FTO, SH2B1, LEP, and LEPR polymorphisms on weight gain associated with antipsychotic treatment. Journal of Clinical Psychopharmacology, 30, 661-666. doi:10.1097/JCP.0b013e3181fae248
[148] Zhong, N., Zhang, R., Qiu, C., Yan, H., Valenzuela, R.K., Zhang, H., Kang, W., Lu, S., Guo, T. and Ma, J. (2011) A novel replicated association between FXYD6 gene and schizophrenia. Biochemical and Biophysical Research Communications, 405, 118-121. doi:10.1016/j.bbrc.2011.01.005
[149] Hattori, K., Fukuzako, H., Hashiguchi, T., Hamada, S., Murata, Y., Isosaka, T., Yuasa, S. and Yagi, T. (2009) Decreased expression of Fyn protein and disbalanced alternative splicing patterns in platelets from patients with schizophrenia. Psychiatry Research, 168, 119-128. doi:10.1016/j.psychres.2008.04.014
[150] Szczepankiewicz, A., Rybakowski, J.K., Skibinska, M., Dmitrzak-Weglarz, M., Leszczynska-Rodziewicz, A., Wilkosc, M. and Hauser, J. (2009) FYN kinase gene: Another glutamatergic gene associated with bipolar disorder? Neuropsychobiology, 59, 178-183. doi:10.1159/000219305
[151] Mellios, N., Huang, H.S., Baker, S.P., Galdzicka, M., Ginns, E. and Akbarian, S. (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biological Psychiatry, 65, 1006-1014. doi:10.1016/j.biopsych.2008.11.019
[152] Hirunsatit, R., George, E.D., Lipska, B.K., Elwafi, H.M., Sander, L., Yrigollen, C.M., Gelernter, J., Grigorenko, E.L., Lappalainen, J., Mane, S., Nairn, A.C., Kleinman, J.E. and Simen, A.A. (2009) Twenty-one-base-pair insertion polymorphism creates an enhancer element and potentiates SLC6A1 GABA transporter promoter activity. Pharmacogenetics Genomics, 19, 53-65. doi:10.1097/FPC.0b013e328318b21a
[153] Butticaz, C., Werge, T., Beckmann, J.S., Cuénod, M., Do, K.Q. and Rivolta, C. (2009) Mutation screening of the glutamate cysteine ligase modifier (GCLM) gene in patients with schizophrenia. Psychiatric Genetics, 19, 201-208. doi:10.1097/YPG.0b013e32832cef21
[154] Segnitz, N., Schmitt, A., Gebicke-Harter, P.J. and Zink, M. (2009) Differential expression of glutamate transporter genes after chronic oral treatment with aripiprazole in rats. Neurochemistry International, 55, 619-628. doi:10.1016/j.neuint.2009.06.003
[155] Arai, S., Shibata, H., Sakai, M., Ninomiya, H., Iwata, N., Ozaki, N. and Fukumaki, Y. (2009) Association analysis of the glutamic acid decarboxylase 2 and the glutamine synthetase genes (GAD2, GLUL) with schizophrenia. Psychiatric Genetics, 19, 6-13.
[156] Kilic, G., Ismail, K.C., Orhan, N., Ozkok, E., Zengin, A., Aydin, M. and Kara, I. (2009) Are GRIK3 (T928G) gene variants in schizophrenia patients different from those in their first-degree relatives? Psychiatry Research, 175, 43-46.
[157] Gaisler-Salomon, I., Miller, G.M., Chuhma, N., Lee, S., Zhang, H., Ghoddoussi, F., Lewandowski, N., Fairhurst, S., Wang, Y., Conjard-Duplany, A., Masson, J., Balsam, P., Hen, R., Arancio, O., Galloway, M.P., Moore, H.M., Small, S.A. and Rayport, S. (2009) Glutaminase-deficient mice display hippocampal hypoactivity, insensitivity to pro-psychotic drugs and potentiated latent inhibition: Relevance to schizophrenia. Neuropsychopharmacology, 34, 2305-2322. doi:10.1038/npp.2009.58
[158] Treutlein, J., Mühleisen, T.W., Frank, J., Mattheisen, M., Herms, S., Ludwig, K.U., Treutlein, T., Schmael, C., Strohmaier, J., Bosshenz, K.V., Breuer, R., Paul, T., Witt, S.H., Schulze, T.G., Schlosser, R.G., Nenadic, I., Sauer, H., Becker, T., Maier, W., Cichon, S., Nothen, M.M. and Rietschel, M. (2009) Dissection of phenotype reveals possible association between schizophrenia and glutamate receptor delta 1 (GRID1) gene promoter. Schizophrenia Research, 111, 123-130. doi:10.1016/j.schres.2009.03.011
[159] Ghose, S., Chin, R., Gallegos, A., Roberts, R., Coyle, J. and Tamminga, C. (2009) Localization of NAAG-related gene expression deficits to the anterior hippocampus in schizophrenia. Schizophrenia Research, 111, 131-137. doi:10.1016/j.schres.2009.03.038
[160] Shibata, H., Tani, A., Chikuhara, T., Kikuta, R., Sakai, M., Ninomiya, H., Tashiro, N., Iwata, N., Ozaki, N. and Fukumaki, Y. (2009) Association study of polymorphisms in the group III metabotropic glutamate receptor genes, GRM4 and GRM7, with schizophrenia. Psychiatry Research, 167, 88-96. doi:10.1016/j.psychres.2007.12.002
[161] Ohnuma, T., Shibata, N., Maeshima, H., Baba, H., Hatano, T., Hanzawa, R. and Arai, H. (2009) Association analysis of glycine-and serine-related genes in a Japanese population of patients with schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 511-518. doi:10.1016/j.pnpbp.2009.02.004
[162] Belforte, J.E., Zsiros, V., Sklar, E.R., Jiang, Z., Yu, G., Li, Y., Quinlan, E.M. and Nakazawa, K. (2009) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nature Neuroscience, 13, 76-83. doi:10.1038/nn.2447
[163] Li, B., Devidze, N., Barengolts, D., Prostak, N., Sphicas, E., Apicella, A.J., Malinow, R. and Emamian, E.S. (2009) NMDA receptor phosphorylation at a site affected in schizophrenia controls synaptic and behavioral plasticity. The Journal of Neuroscience, 29, 11965-11972. doi:10.1523/JNEUROSCI.2109-09.2009
[164] Kang, S.G., Lee, H.J., Choi, J.E., An, H., Rhee, M. and Kim, L. (2009) Association study between glutathione S-transferase GST-M1, GST-T1, and GST-P1 polymorphisms and tardive dyskinesia. Human Psychopharmacology, 24, 55-60. doi:10.1002/hup.988
[165] Eom, T.Y. and Jope, R.S. (2009) Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3alpha/beta impairs in vivo neural precursor cell proliferation. Biological Psychiatry, 66, 494-502. doi:10.1016/j.biopsych.2009.04.015
[166] Dewachter, I., Ris, L., Jaworski, T., Seymour, C.M., Kremer, A., Borghgraef, P., De Vijver, H., Godaux, E. and Van Leuven, F. (2009) GSK3beta, a centre-staged kinase in neuropsychiatric disorders, modulates long term memory by inhibitory phosphorylation at serine-9. Neurobiology of Disease, 35, 193-200. doi:10.1016/j.nbd.2009.04.003
[167] Baruch, K., Silberberg, G., Aviv, A., Shamir, E., Bening-Abu-Shach, U., Baruch, Y., Darvasi, A. and Navon, R. (2009) Association between golli-MBP and schizophrenia in the Jewish Ashkenazi population: are regulatory regions involved? The International Journal of Neuropsychopharmacology, 12, 885-894. doi:10.1017/S1461145708009887
[168] Kalkman, H.O. (2009) Altered growth factor signaling pathways as the basis of aberrant stem cell maturation in schizophrenia. Pharmacology & Therapeutics, 121, 115-122. doi:10.1016/j.pharmthera.2008.11.002
[169] Klejbor, I., Kucinski, A., Wersinger, S.R., Corso, T., Spodnik, J.H., Dziewiatkowski, J., Morys, J., Hesse, R.A., Rice, K.C., Miletich, R., Stachowiak, E.K. and Stachowiak, M.K. (2009) Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis. Schizophrenia Research, 113, 308-321. doi:10.1016/j.schres.2009.06.006
[170] Pae, C.U., Drago, A., Kim, J.J., Mandelli, L., De Ronchi, D. and Serretti, A. (2009) The impact of heat shock protein 70 gene variations on clinical presentation and outcome in schizophrenic inpatients. Neuropsychobiology, 59, 135-141. doi:10.1159/000218075
[171] Gilks, W.P., Allott, E.H., Donohoe, G., Cummings, E., International Schizophrenia Consortium, Gill, M., Corvin, A.P. and Morris, D.W. (2009) Replicated genetic evidence supports a role for HOMER2 in schizophrenia. Neuroscience Letters, 468, 229-233. doi:10.1016/j.neulet.2009.11.003
[172] Paul-Samojedny, M., Owczarek, A., Suchanek, R., Kowalczyk, M., Fila-Danilow, A., Borkowska, P., Kucia, K. and Kowalski, J. (2011) Association study of interferon gamma (IFN-γ) +874T/A gene polymorphism in patients with paranoid schizophrenia. Journal of Moleuar Neuroscience, 43, 309-315. doi:10.1007/s12031-010-9442-x
[173] Frezza, D., Giambra, V., Mattioli, C., Piccoli, K., Massoud, R., Siracusano, A., Di Giannantonio, M., Birshtein, B.K. and Rubino, I.A. (2009) Allelic frequencies of 3’ Ig heavy chain locus enhancer HS1,2-A associated with Ig levels in patients with schizophrenia. International Journal of Immunopathology and Pharmacology, 22, 115-123.
[174] Bonvicini, C., Gennarelli, M., Scassellati, C., Bignotti, S., Gardella, R., Barlati, S., Valsecchi, P. and Sacchetti, E. (2010) Polymorphic CA repeat in IGF-I gene: Lack of association with schizophrenia. Psychiatric Genetics, 20, 44-45. doi:10.1097/YPG.0b013e3283351167
[175] Bernstein, H.G., Ernst, T., Lendeckel, U., Bukowska, A., Ansorge, S., Stauch, R., Have, S.T., Steiner, J., Dobrowolny, H. and Bogerts, B. (2009) Reduced neuronal expression of insulin-degrading enzyme in the dorsolateral prefrontal cortex of patients with haloperidol-treated, chronic schizophrenia. Journal of Psychiatric Research, 43, 1095-1105. doi:10.1016/j.jpsychires.2009.03.006
[176] Sun, S., Wei, J., Li, H., Jin, S., Li, P., Ju, G., Liu, Y. and Zhang, X.Y. (2009) A family-based study of the IL3RA gene on susceptibility to schizophrenia in a Chinese Han population. Brain Research, 1268, 13-16. doi:10.1016/j.brainres.2009.02.071
[177] Ozbey, U., Tug, E. and Namli, M. (2009) Interleukin-10 gene promoter polymorphism in patients with schizophrenia in a region of East Turkey. World Journal of Biological Psychiatry, 10, 461-468. doi:10.1080/15622970802626580
[178] Liu, Y., Chen, G. and Norton, N. (2009) Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. Journal of Biomedicine and Biotechnology, 2009, 536918. doi:10.1155/2009/536918
[179] Huffaker, S.J., Chen, J., Nicodemus, K.K., Sambataro, F., Yang, F., Mattay, V., Lipska, B.K., Hyde, T.M., Song, J., Rujescu, D., Giegling, I., Mayilyan, K., Proust, M.J., Soghoyan, A., Caforio, G., Callicott, J.H., Bertolino, A., Meyer-Lindenberg A., Chang, J., Ji, Y., Egan, M.F., Goldberg, T.E., Kleinman, J.E., Lu, B. and Weinberger, D.R. (2009) A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nature Medicine, 15, 509-18. doi:10.1038/nm.1962
[180] Shen, Q., Zhang, J., Wang, Y., Liu, B., Li, X., Zhao, Q., Chen, S., Ji, J., Yang, F., Wan, C., Gao, L., Xu, Y., Feng, G., He, L. and He, G. (2011) No association between the KCNH1, KCNJ10 and KCNN3 genes and schizophrenia in the Han Chinese population. Neuroscience Letters, 487, 61-65. doi:10.1016/j.neulet.2010.09.074
[181] Miller, C.L., Murakami, P., Ruczinski, I., Ross, R.G., Sinkus, M., Sullivan, B. and Leonard, S. (2009) Two complex genotypes relevant to the kynurenine pathway and melanotropin function show association with schizophrenia and bipolar disorders. Schizophrenia Research, 113, 259-267. doi:10.1016/j.schres.2009.05.014
[182] Koide, T., Banno, M., Aleksic, B., Yamashita, S., Kikuchi, T., Kohmura, K., Adachi, Y., Kawano, N., Kushima, I., Nakamura, Y., Okada, T., Ikeda, M., Ohi, K., Yasuda, Y., Hashimoto, R., Inada, T., Ujike, H., Iidaka, T., Suzuki, M., Takeda, M., Iwata, N. and Ozaki, N. (2012) Common variants in MAGI2 gene are associated with increased risk for cognitive impairment in schizophrenic patients. PLoS One, 7, e36836. doi:10.1371/journal.pone.0036836
[183] International Schizophrenia Consortium. (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455, 237-241. doi:10.1038/nature07239
[184] Stefansson, H., Ophoff, R.A., Steinberg, S., Andreassen, O.A., Cichon, S., Rujescu, D., Werge, T., Pietilainen, O.P., Mors, O., Mortensen, P.B., Sigurdsson, E., Gustafsson, O., Nyegaard, M., Tuulio-Henriksson, A., Ingason, A., Hansen, T., Suvisaari, J., Lonnqvist, J., Paunio, T., Borglum, A.D., Hartmann, A., Fink-Jensen, A., Nordentoft, M., Hougaard, D., Norgaard-Pedersen, B., Bottcher, Y., Olesen, J., Breuer, R., Moller, H.J., Giegling, I., Rasmussen, H.B., Timm, S., Mattheisen, M., Bitter, I., Réthelyi, J.M., Magnusdottir, B.B., Sigmundsson, T., Olason, P., Masson, G., Gulcher, J.R., Haraldsson, M., Fossdal, R., Thorgeirsson, T.E., Thorsteinsdottir, U., Ruggeri, M., Tosato, S., Franke, B., Strengman, E., Kiemeney, L.A.; Genetic Risk and Outcome in Psychosis (GROUP), Melle, I., Djurovic, S., Abramova, L., Kaleda, V., Sanjuan, J., de Frutos R., Bramon, E., Vassos, E., Fraser, G., Ettinger, U., Picchioni, M., Walker, N., Toulopoulou, T., Need, A.C., Ge, D., Yoon, J.L., Shianna, K.V., Freimer, N.B., Cantor, R.M., Murray, R., Kong, A., Golimbet, V., Carracedo, A., Arango, C., Costas, J., Jonsson, E.G., Terenius, L., Agartz, I., Petursson, H., N?then, M.M., Rietschel, M., Matthews, P.M., Muglia, P., Peltonen, L., St Clair D., Goldstein, D.B., Stefansson, K. and Collier, D. A. (2009) Common variants conferring risk of schizophrenia. Nature, 460, 744-747.
[185] Lee, B.D., Walss-Bass, C., Thompson, P.M., Dassori, A., Montero, P.A., Medina, R., Contreras, S., Armas, R., Ramirez, M., Pereira, M., Salazar, R., Leach, R.J, Quezada, P., Raventos, H. and Escamilla, M.A. (2007) Malic enzyme 2 and susceptibility to psychosis and mania. Psychiatry Researchearch, 150, 1-11. doi:10.1016/j.psychres.2006.06.001
[186] Kucukali, C.I., Aydin, M., Ozkok, E., Bilge, E., Orhan, N., Zengin, A. and Kara, I. (2009) Do schizophrenia and bipolar disorders share a common disease susceptibility variant at the MMP3 gene? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 557-561. doi:10.1016/j.pnpbp.2009.02.012
[187] Rybakowski, J.K., Skibinska, M., Leszczynska-Rodziewicz, A., Kaczmarek, L. and Hauser, J. (2009) Matrix metalloproteinase-9 gene and bipolar mood disorder. NeuroMolecular Medicineicine, 11, 128-132. doi:10.1007/s12017-009-8072-3
[188] Djurovic, S., Le Hellard, S., Kahler, A.K., Jonsson, E.G., Agartz, I., Steen, V.M., Hall, H., Wang, A.G., Rasmussen, H.B., Melle, I., Werge, T. and Andreassen, O.A. (2009) Association of MCTP2 gene variants with schizophrenia in three independent samples of Scandinavian origin (SCOPE). Psychiatry Researchearch, 168, 256-258. doi:10.1016/j.psychres.2008.08.007
[189] Feng, L.G., Song, Z.W., Xin, F, and Hu, J. (2009) Association of plasma homocysteine and methylenetetrahydrofolate reductase C677T gene variant with schizophrenia: A Chinese Han population-based case-control study. Psychiatry Research, 168, 205-208. doi:10.1016/j.psychres.2008.05.009
[190] Zhang, C., Xie, B., Du, Y., Cheng, W., Fang, Y. and Yu, S. (2010) Further evidence that methylenetetrahydrofolate reductase A1298C polymorphism is a risk factor for schizophrenia. Journal of Neural Transmission, 117, 1115-1117. doi:10.1007/s00702-010-0442-3
[191] Kahler, A.K., Djurovic, S., Kulle, B., Jonsson, E.G., Agartz, I., Hall, H., Opjordsmoen, S., Jakobsen, K.D., Hansen, T., Melle, I., Werge, T., Steen, V.M. and Andreassen, O.A. (2008) Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. American Journal of Medical Genetics, Part B, Neuropsychiatric Genetics, 147B, 1089-1100.
[192] Li, J., Liu, J., Feng, G., Li, T., Zhao, Q., Li, Y., Hu, Z., Zheng, L., Zeng, Z., He, L., Wang, T. and Shi, Y. (2011) The MDGA1 gene confers risk to schizophrenia and bipolar disorders. Schizophrenia Research, 125, 194-200. doi:10.1016/j.schres.2010.11.002
[193] Sorce, S., Schiavone, S., Tucci, P., Colaianna, M., Jaquet, V., Cuomo, V., Dubois-Dauphin, M., Trabace, L. and Krause, K.H. (2010) The NADPH oxidase NOX2 controls glutamate release: A novel mechanism involved in psychosis-like ketamine responses. The Journal of Neuroscience, 30, 11317-11325. doi:10.1523/JNEUROSCI.1491-10.2010
[194] Gibbons, A.S., Thomas, E.A. and Dean, B. (2009) Regional and duration of illness differences in the alteration of NCAM-180 mRNA expression within the cortex of subjects with schizophrenia. Schizophrenia Research, 112, 65-71. doi:10.1016/j.schres.2009.04.002
[195] Cox, E.T., Brennaman, L.H., Gable, K.L., Hamer, R.M., Glantz, L.A., Lamantia, A.S., Lieberman, J.A., Gilmore, J.H., Maness, P.F. and Jarskog, L.F. (2009) Developmental regulation of neural cell adhesion molecule in human prefrontal cortex. Neuroscience, 162, 96-105. doi:10.1016/j.neuroscience.2009.04.037
[196] Alaerts, M., Ceulemans, S., Forero, D., Moens, L.N., De Zutter, S., Heyrman, L., Lenaerts, A.S., Norrback, K.F., De Rijk, P., Nilsson, L.G., Goossens, D., Adolfsson, R. and Del-Favero, J. (2009) Support for NRG1 as a susceptibility factor for schizophrenia in a northern Swedish isolated population. Achives of General Psychiatry, 66, 828-37. doi:10.1001/archgenpsychiatry.2009.82
[197] Li, D., Collier, D.A. and He, L. (2006) Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Human Molecular Genetics, 15, 1995-2002. doi:10.1093/hmg/ddl122
[198] Pedrosa, E., Nolan, K.A., Stefanescu, R., Herskovits, P., Novak, T., Zukov, I., Stopkova, P. and Lachman, H.M. (2009) Analysis of a promoter polymorphism in the SMDF neuregulin 1 isoform in Schizophrenia. Neuropsychobiology, 59, 205-212. doi:10.1159/000223732
[199] Prata, D.P., Breen, G., Osborne, S., Munro, J., St Clair, D. and Collier, D.A. (2009) An association study of the neuregulin 1 gene, bipolar affective disorder and psychosis. Psychiatric Genetics, 19, 113-116. doi:10.1097/YPG.0b013e32832a4f69
[200] Wang, F., Jiang, T., Sun, Z., Teng, S.L., Luo, X., Zhu, Z., Zang, Y., Zhang, H., Yue, W., Qu, M., Lu, T., Hong, N., Huang, H., Blumberg, H.P. and Zhang, D. (2009) Neuregulin 1 genetic variation and anterior cingulum integrity in patients with schizophrenia and healthy controls. Journal of Psychiatry and Neuroscience, 34, 181-186.
[201] Gong, Y.G., Wu, C.N., Xing, Q.H., Zhao, X.Z., Zhu, J. and He, L. (2009) A two-method meta-analysis of Neuregulin 1 (NRG1) association and heterogeneity in schizophrenia. Schizophrenia Reseaech, 111, 109-114. doi:10.1016/j.schres.2009.03.017
[202] Zhang, H.X., Li, W.Q., Zhang, Y., Zhao, J.P., Lv, L.X. and Yang, G. (2009) Association analysis of neuregulin 1 gene polymorphism with schizophrenia in Chinese Han population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 26, 16-20.
[203] Deakin, I.H., Law, A.J., Oliver, P.L., Schwab, M.H., Nave, K.A., Harrison, P.J. and Bannerman, D.M. (2009) Behavioural characterization of neuregulin 1 type I overexpressing transgenic mice. Neuro Report, 20, 1523-1528. doi:10.1097/WNR.0b013e328330f6e7
[204] Vullhorst, D., Neddens, J., Karavanova, I., Tricoire, L., Petralia, R.S., McBain, C.J. and Buonanno, A. (2009) Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. The Journal of Neuroscience, 29, 12255-12264. doi:10.1523/JNEUROSCI.2454-09.2009
[205] Mata, I., Perez-Iglesias, R., Roiz-Santianez, R., Tordesillas-Gutierrez, D., Gonzalez-Mandly, A., Vazquez-Barquero, J.L. and Crespo-Facorro, B. (2009) A neuregulin 1 variant is associated with increased lateral ventricle volume in patients with first-episode schizophrenia. Biological Psychiatry, 65, 535-40. doi:10.1016/j.biopsych.2008.10.020
[206] Chen, P.L., Avramopoulos, D., Lasseter, V.K., McGrath, J.A., Fallin, M.D., Liang, K.Y., Nestadt, G., Feng, N., Steel, G., Cutting, A.S., Wolyniec, P., Pulver, A.E. and Valle, D. (2009) Fine mapping on chromosome 10q22-q23 implicates Neuregulin 3 in schizophrenia. The American Journal of Human Genetics, 84, 21-34. doi:10.1016/j.ajhg.2008.12.005
[207] Zhang, R., Du, X.Y., Yu, J., Xu, N., Zheng, Y.W., Zhao, Y.L., Zhang, H. and Ma, J. (2012) No genetic evidence for Neuregulin 3 conferring risk of schizophrenia in the Chinese population. Psychiatry Research (in press). doi:10.1016/j.psychres.2012.08.017
[208] Stefansson, H., Rujescu, D., Cichon, S., Pietil?inen, O.P., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer-Voskamp, J.E., Hansen, T., Jakobsen, K.D., Muglia, P., Francks, C., Matthews, P.M., Gylfason, A., Halldorsson, B.V., Gudbjartsson, D., Thorgeirsson, T.E., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Bjornsson, A., Mattiasdottir, S., Blondal, T., Haraldsson, M., Magnusdottir, B.B., Giegling, I., Moller, H.J., Hartmann, A., Shianna, K.V., Ge, D., Need, A.C., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Paunio, T., Toulopoulou, T., Bramon, E., Di Forti, M., Murray, R., Ruggeri, M., Vassos, E., Tosato, S., Walshe, M., Li, T., Vasilescu, C., Mühleisen, T.W., Wang, A.G., Ullum, H., Djurovic, S., Melle, I., Olesen, J., Kiemeney, L.A., Franke, B.; GROUP, Sabatti, C., Freimer, N.B., Gulcher, J.R., Thorsteinsdottir, U., Kong, A., Andreassen, O.A., Ophoff, R.A., Georgi, A., Rietschel, M., Werge, T., Petursson, H., Goldstein, D.B., N?then, M.M., Peltonen, L., Collier, D.A., St Clair, D. and Stefansson, K. (2008) Large recurrent microdeletions associated with schizophrenia. Nature, 455, 232-236. doi:10.1038/nature07229
[209] Ruano, D., Aulchenko, Y.S., Macedo, A., Soares, M.J., Valente, J., Azevedo, M.H., Hutz, M.H., Gama, C.S., Lobato, M.I., Belmonte-de-Abreu, P., Goodman, A.B., Pato, C., Heutink, P. and Palha, J.A. (2008) Association of the gene encoding neurogranin with schizophrenia in males. Journal of Psychiatric Research, 42, 125-133. doi:10.1016/j.jpsychires.2006.10.008
[210] Inoue, Y., Shinkai, T., Utsunomiya, K., Sakata, S., Fukunaka, Y., Yamaguchi, W., Yamada, K., Chen, H.I., Hwang, R., Ohmori, O. and Nakamura, J. (2009) No association between a functional polymorphism in the promoter region of the neuropeptide Y gene (–485C > T) and schizophrenia. Neuroscience Letters, 452, 72-74. doi:10.1016/j.neulet.2009.01.005
[211] Otnaess, M.K., Djurovic, S., Rimol, L.M., Kulle, B., Kahler, A.K., Jonsson, E.G., Agartz, I., Sundet, K., Hall, H., Timm, S., Hansen, T., Callicott, J.H., Melle, I., Werge, T. and Andreassen, O.A. (2009) Evidence for a possible association of neurotrophin receptor (NTRK-3) gene polymorphisms with hippocampal function and schizophrenia. Neurobiology of Disease, 34, 518-524. doi:10.1016/j.nbd.2009.03.011
[212] Donohoe, G., Walters, J., Morris, D.W., Quinn, E.M., Judge, R., Norton, N., Giegling, I., Hartmann, A.M., M?ller, H.J., Muglia, P., Williams, H., Moskvina, V., Peel, R., O’Donoghue, T., Owen, M.J., O’Donovan, M.C., Gill, M., Rujescu, D. and Corvin, A. (2009) Influence of NOS1 on verbal intelligence and working memory in both patients with schizophrenia and healthy control subjects. Achives of General Psychiatry, 66, 1045-1054. doi:10.1001/archgenpsychiatry.2009.139
[213] Okumura, T., Okochi, T., Kishi, T., Ikeda, M., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., Kawashima, K., Tsunoka, T., Ujike, H., Inada, T., Ozaki, N. and Iwata, N. (2009) No association between polymorphisms of neuronal oxide synthase 1 gene (NOS1) and schizophrenia in a Japanese population. NeuroMolecular Medicine, 11, 123-127. doi:10.1007/s12017-009-8068-z
[214] Riley, B., Thiselton, D., Maher, B.S., Bigdeli, T., Wormley, B., McMichael, G.O., Fanous, A.H., Vladimirov, V., O’Neill, F.A, Walsh, D. and Kendler, K.S. (2010) Replication of association between schizophrenia and ZNF804A in the Irish case-control study of Schizophrenia sample. Molecular Psychiatry, 15, 29-37. doi:10.1038/mp.2009.109
[215] Wratten, N.S., Memoli, H., Huang, Y., Dulencin, A.M., Matteson, P.G., Cornacchia, M.A., Azaro, M.A., Messenger, J., Hayter, J.E., Bassett, A.S., Buyske, S., Millonig, J.H., Vieland, V.J. and Brzustowicz, L.M. (2009) Identification of a schizophrenia-associated functional noncoding variant in NOS1AP. The American Journal of Psychiatry, 166, 434-441. doi:10.1176/appi.ajp.2008.08081266
[216] Kremeyer, B., García, J., Kymalainen, H., Wratten, N., Restrepo, G., Palacio, C., Miranda, A.L., López, C., Restrepo, M., Bedoya, G., Brzustowicz, L.M., Ospina-Duque, J., Arbeláez, M.P. and Ruiz-Linares, A. (2009) Evidence for a role of the NOS1AP (CAPON) gene in schizophrenia and its clinical dimensions: An association study in a South American population isolate. Human Heredity, 67, 163-173. doi:10.1159/000181154
[217] Arion, D. and Lewis, D.A. (2011) Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. Archives of General Psychiatry, 68, 21-31. doi:10.1001/archgenpsychiatry.2010.114
[218] Sinibaldi, L., De Luca, A., Bellacchio, E., Conti, E., Pasini, A., Paloscia, C., Spalletta, G., Caltagirone, C., Pizzuti, A. and Dallapiccola, B. (2004) Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Human Mutation, 24, 534-535. doi:10.1002/humu.9292
[219] Meng, J., Shi, Y., Zhao, X., Guo, S., Wang, H., Zheng, Y., Tang, R., Feng, G., Gu, N., Liu, H., Zhu, S. and He, L. (2007) No association between the genetic polymorphisms in the RTN4R gene and schizophrenia in the Chinese population. Journal of Neural Transmission, 114, 249-254. doi:10.1007/s00702-006-0538-y
[220] Hsu, R., Woodroffe, A., Lai, W.S., Cook, M.N., Mukai, J., Dunning, J.P., Swanson, D.J., Roos, J.L., Abecasis, G.R., Karayiorgou, M. and Gogos, J.A. (2007) Nogo Receptor 1 (RTN4R) as a candidate gene for schizophrenia: Analysis using human and mouse genetic approaches. PLoS One, 2, e1234. doi:10.1371/journal.pone.0001234
[221] Budel, S., Padukkavidana, T., Liu, B.P., Feng, Z., Hu, F., Johnson, S., Lauren, J., Park, J.H., McGee, A.W., Liao, J., Stillman, A., Kim, J.E., Yang, B.Z., Sodi, S., Gelernter, J., Zhao, H., Hisama, F., Arnsten, A.F. and Strittmatter, S.M. (2008) Genetic variants of Nogo-66 receptor with possible association to schizophrenia block myelin inhibition of axon growth. The Journal of Neuroscience, 28, 13161-13172. doi:10.1523/JNEUROSCI.3828-08.2008
[222] McDonald, P.P., O’Reilly, R. and Singh, S.M. (2011) Methylation analysis of the NOTCH4-25 C/T polymorphism in schizophrenia. Psychiatric Genetics, 21, 5-13. doi:10.1097/YPG.0b013e32834133bc
[223] Schaaf, C.P., Boone, P.M., Sampath, S., Williams, C., Bader, P.I., Mueller, J.M., Shchelochkov, O.A., Brown, C.W., Crawford, H.P., Phalen, J.A., Tartaglia, N.R., Evans, P., Campbell, W.M., Chun-Hui Tsai, A., Parsley, L., Grayson, S.W., Scheuerle, A., Luzzi, C.D., Thomas, S.K., Eng, P.A., Kang, S.H., Patel, A., Stankiewicz, P. and Cheung, S.W. (2012) Phenotypic spectrum and genotypephenotype correlations of NRXN1 exon deletions. European Journal of Human Genetics, 12, 1240-1247. doi:10.1038/ejhg.2012.95
[224] Georgieva, L., Moskvina, V., Peirce, T., Norton, N., Bray, N.J., Jones, L., Holmans, P., Macgregor, S., Zammit, S., Wilkinson, J., Williams, H., Nikolov, I., Williams, N., Ivanov, D., Davis, K.L., Haroutunian, V., Buxbaum, J.D., Craddock, N., Kirov, G., Owen, M.J. and O’Donovan, M.C. (2006) Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proceedings of the National Academy of Sciences, 103, 12469-12474. doi:10.1073/pnas.0603029103
[225] Sims, R., Hollingworth, P., Moskvina, V., Dowzell, K., O’Donovan, M.C., Powell, J., Lovestone, S., Brayne, C., Rubinsztein, D., Owen, M.J., Williams, J. and Abraham, R. (2009) Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer disease. Neuroscience Letters, 461, 54-59. doi:10.1016/j.neulet.2009.05.051
[226] Barley, K., Dracheva, S. and Byne, W. (2009) Subcortical oligodendrocyte-and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorders. Schizophrenia Research, 112, 54-64. doi:10.1016/j.schres.2009.04.019
[227] Tesli, M., Athanasiu, L., Mattingsdal, M., Kahler, A.K., Gustafsson, O., Andreassen, B.K., Werge, T., Hansen, T., Mors, O., Mellerup, E., Koefoed, P., Jonsson, E.G., Agartz, I., Melle, I., Morken, G., Djurovic, S. and Andreassen, O.A. (2010) Association analysis of PALB2 and BRCA2 in bipolar disorders and schizophrenia in a Scandinavian case-control sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B, 1276-1282. doi:10.1002/ajmg.b.31098
[228] Numata, S., Iga, J., Nakataki, M., Tayoshi, S., Tanahashi, T., Itakura, M., Ueno, S. and Ohmori, T. (2009) Positive association of the pericentrin (PCNT) gene with major depressive disorder in the Japanese population. Journal of Psychiatry and Neuroscience: JPN, 34, 195-198.
[229] Mathur, A., Law, M.H., Hamzehloei, T., Megson, I.L., Shaw, D.J. and Wei, J. (2009) No association between the PPARG gene and schizophrenia in a British population. Prostaglandins, Leukotrienes and Essential Fatty Acids, 81, 273-277. doi:10.1016/j.plefa.2009.06.001
[230] Houlihan, L.M., Christoforou, A., Arbuckle, M.I., Torrance, H.S., Anderson, S.M., Muir, W.J., Porteous, D.J., Blackwood, D.H. and Evans, K.L. (2009) A case-control association study and family-based expression analysis of the bipolar disorders candidate gene PI4K2B. Journal of Psychiatric Research, 43, 1272-1277. doi:10.1016/j.jpsychires.2009.05.004
[231] Zhang, J., Chen, J., Xu, Q. and Shen, Y. (2009) Does the presenilin 2 gene predispose to schizophrenia? Schizophrenia Research, 109, 121-129. doi:10.1016/j.schres.2009.01.013
[232] Roussos, P., Giakoumaki, S.G. and Bitsios, P. (2009) A risk PRODH haplotype affects sensorimotor gating, memory, schizotypy, and anxiety in healthy male subjects. Biological Psychiatry, 65, 1063-1070. doi:10.1016/j.biopsych.2009.01.003
[233] Aberg, K., Saetre, P., Lindholm, E., Ekholm, B., Pettersson, U., Adolfsson, R. and Jazin, E. (2006) Human QKI, a new candidate gene for schizophrenia involved in myelination. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141, 84-90. doi:10.1002/ajmg.b.30243
[234] Jiang, L., Saetre, P., Jazin, E. and Carlstrom, E.L. (2009) Haloperidol changes mRNA expression of a QKI splice variant in human astrocytoma cells. BMC Pharmacol, 9. doi:10.1186/1471-2210-9-6
[235] Cheong, H.S., Park, B.L., Kim, E.M., Park, C.S., Sohn, J.W., Kim, B.J., Kim, J.W., Kim, K.H., Shin, T.M., Choi, I.G., Han, S.W., Hwang, J., Koh, I., Shin, H.D. and Woo, S.I. (2011) Association of RANBP1 haplotype with smooth pursuit eye movement abnormality. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156, 67-71. doi:10.1002/ajmg.b.31139
[236] Goes, F.S., Willour, V.L., Zandi, P.P., Belmonte, P.L., MacKinnon, D.F., Mondimore, F.M., Schweizer, B., National Institute of Mental Health Genetics Initiative Bipolar disorders Consortium, DePaulo, J.R. Jr, Gershon, E.S., McMahon, F.J. and Potash, J.B. (2010) Sex-specific association of the reelin gene with bipolar disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B, 549-553.
[237] Wedenoja, J., Tuulio-Henriksson, A., Suvisaari, J., Loukola, A., Paunio, T., Partonen, T., Varilo, T., Lonnqvist, J. and Peltonen, L. (2010) Replication of association between working memory and reelin, a potential modifier gene in schizophrenia. Biological Psychiatry, 67, 983-991. doi:10.1016/j.biopsych.2009.09.026
[238] Lintas, C. and Persico, A.M. (2010) Neocortical RELN promoter methylation increases significantly after puberty. Neuroreport, 21, 114-118. doi:10.1097/WNR.0b013e328334b343
[239] Campo, C.G., Sinagra, M., Verrier, D., Manzoni, O.J., Chavis, P. (2009) Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis. PLoS One, 4, e5505. doi:10.1371/journal.pone.0005505
[240] Ammassari-Teule, M., Sgobio, C., Biamonte, F., Marrone, C., Mercuri, N.B. and Keller, F. (2009) Reelin haploinsufficiency reduces the density of PV+ neurons in circumscribed regions of the striatum and selectively alters striatal-based behaviors. Psychopharmacology, 204, 511-521. doi:10.1007/s00213-009-1483-x
[241] Tueting, P., Doueiri, M.S., Guidotti, A., Davis, J.M. and Costa, E. (2006) Reelin down-regulation in mice and psychosis endophenotypes. Neuroscience & Biobehavioral Reviews, 30, 1065-1077. doi:10.1016/j.neubiorev.2006.04.001
[242] Noh, J.S., Sharma, R.P., Veldic, M., Salvacion, A.A., Jia, X., Chen, Y., Costa, E., Guidotti, A. and Grayson, D.R. (2005) DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures. Proceedings of the National Academy of Sciences, 102, 1749-1754. doi:10.1073/pnas.0409648102
[243] Kanazawa, T., Glatt, S.J., Faraone, S.V., Hwu, H.G., Yoneda, H., Tsuang, M.T. (2009) Family-based association study of SELENBP1 in schizophrenia. Schizophrenia Reseaech, 113, 268-272. doi:10.1016/j.schres.2009.06.011
[244] Labrie, V., Fukumura, R., Rastogi, A., Fick, L.J., Wang, W., Boutros, P.C., Kennedy, J.L., Semeralul, M.O., Lee, F.H., Baker, G.B., Belsham, D.D., Barger, S.W., Gondo, Y., Wong, A.H. and Roder, J.C. (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Human Molecular Genetics, 18, 3227-3243. doi:10.1093/hmg/ddp261
[245] Kishi, T., Fukuo, Y., Okochi, T., Kawashima, K., Kitajima, T., Inada, T., Ozaki, N., Musso, G.M., Kane, J.M., Correll, C.U. and Iwata, N. (2012) Serotonin 6 receptor gene and schizophrenia: Case-control study and metaanalysis. Human Psychopharmacology, 27, 63-69. doi:10.1002/hup.1266
[246] Vijayan, N.N., Iwayama, Y., Koshy, L.V., Natarajan, C., Nair, C., Allencherry, P.M., Yoshikawa, T. and Banerjee, M. (2009) Evidence of association of serotonin transporter gene polymorphisms with schizophrenia in a South Indian population. Journal of Human Genetics, 54, 538-542. doi:10.1038/jhg.2009.76
[247] Lin, C., Tang, W., Hu, J., Gao, L., Huang, K., Xu, Y., He, G., Liang, P., Feng, G., He, L. and Shi, Y. (2009) Haplotype analysis confirms association of the serotonin transporter (5-HTT) gene with schizophrenia in the Han Chinese population. Neuroscience Letters, 453, 210-213. doi:10.1016/j.neulet.2009.02.023
[248] Goldberg, T.E., Kotov, R., Lee, A.T., Gregersen, P.K., Lencz, T., Bromet, E. and Malhotra, A.K. (2009) The serotonin transporter gene and disease modification in psychosis: Evidence for systematic differences in allelic directionality at the 5-HTTLPR locus. Schizophrenia Research, 111, 103-108. doi:10.1016/j.schres.2009.03.021
[249] Kim, Y.R., Jahng, J.W. and Min, S.K. (2009) Association between the serotonin transporter gene (5-HTTLPR) and anger-related traits in Korean schizophrenic patients. Neuropsychobiology, 59, 165-171. doi:10.1159/000218079
[250] Bachmann-Gagescu, R., Mefford, H.C., Cowan, C., Glew, G.M., Hing, A.V., Wallace, S., Bader, P.I., Hamati, A., Reitnauer, P.J., Smith, R., Stockton, D.W., Muhle, H., Helbig, I., Eichler, E.E., Ballif, B.C., Rosenfeld, J. and Tsuchiya, K.D. (2010) Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Genetics in Medicine, 12, 641-647. doi:10.1097/GIM.0b013e3181ef4286
[251] Maekawa, M., Ohnishi, T., Hashimoto, K., Watanabe, A., Iwayama, Y., Ohba, H., Hattori, E., Yamada, K. and Yoshikawa, T. (2010) Analysis of strain-dependent prepulse inhibition points to a role for Shmt1 (SHMT1) in mice and in schizophrenia. Journal of Neurochemistry, 115, 1374-1385. doi:10.1111/j.1471-4159.2010.07039.x
[252] McAuley, E.Z., Scimone, A., Tiwari, Y., Agahi, G., Mowry, B.J., Holliday, E.G., Donald, J.A., Weickert, C.S., Mitchell, P.B., Schofield, P.R. and Fullerton, J.M. (2012) Identification of sialyltransferase 8B as a generalized susceptibility gene for psychotic and mood disorders on chromosome 15q25-26. PLoS One, 7, e38172. doi:10.1371/journal.pone.0038172
[253] Takizawa, R., Hashimoto, K., Tochigi, M., Kawakubo, Y., Marumo, K., Sasaki, T., Fukuda, M. and Kasai, K. (2009) Association between sigma-1 receptor gene polymorphism and prefrontal hemodynamic response induced by cognitive activation in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 491-498. doi:10.1016/j.pnpbp.2009.01.014
[254] Cordeiro, Q., Siqueira-Roberto, J. and Vallada, H. (2010) Association between the SLC6A3 A1343G polymorphism and schizophrenia. Arquivos de Neuropsiquiatria, 68, 716-719. doi:10.1590/S0004-282X2010000500008
[255] Koga, M., Ishiguro, H., Yazaki, S., Horiuchi, Y., Arai, M., Niizato, K., Iritani, S., Itokawa, M., Inada, T., Iwata, N., Ozaki, N., Ujike, H., Kunugi, H., Sasaki, T., Takahashi, M., Watanabe, Y., Someya, T., Kakita, A., Takahashi, H., Nawa, H., Muchardt, C., Yaniv, M. and Arinami, T. (2009) Involvement of SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia. Human Molecular Genetics, 18, 2483-2494. doi:10.1093/hmg/ddp166
[256] Yuan, A., Yi, Z., Sun, J., Du, Y., Yu, T., Zhang, C., Liu, Y., Zhou, Y., Liu, D., Li, H., Xu, Y., Cheng, Z., Li, W. and Yu, S. (2012) Effect of SOX10 gene polymorphism on early onset schizophrenia in Chinese Han population. Neuroscience Letters, 521, 93-97. doi:10.1016/j.neulet.2012.05.040
[257] Zhou, X., Tang, W., Greenwood, T.A., Guo, S., He, L., Geyer, M.A. and Kelsoe, J.R. (2009) Transcription factor SP4 is a susceptibility gene for bipolar disorders. PLoS One, 4, e5196. doi:10.1371/journal.pone.0005196
[258] Bermudo-Soriano, C.R., Vaquero-Lorenzo, C., Diaz-Hernandez, M., Perez-Rodriguez, M.M., Fernandez-Piqueras, J., Saiz-Ruiz, J. and Baca-Garcia E. (2009) SAT-1-1415T/C polymorphism and susceptibility to schizophrenia. Progress in Neuro-Psychopharmacol Biological Psychiatry, 33, 345-348. doi:10.1016/j.pnpbp.2008.12.015
[259] Lewis, A.G. and Minchin, R.F. (2009) Lack of exonic sulfotransferase 4A1 mutations in controls and schizophrenia cases. Psychiatric Genetics, 19, 53-55. doi:10.1097/YPG.0b013e3283118776
[260] Chen, Q., Che, R., Wang, X., O’Neill, F.A., Walsh, D., Tang, W., Shi, Y., He, L., Kendler, K.S. and Chen, X. (2009) Association and expression study of synapsin III and schizophrenia. Neuroscience Letters, 465, 248-251. doi:10.1016/j.neulet.2009.09.032
[261] Murphy, B.C., O’Reilly, R.L. and Singh, S.M. (2008) DNA methylation and mRNA expression of SYN III, a candidate gene for schizophrenia. BMC Medical Genetics, 9, 115. doi:10.1186/1471-2350-9-115
[262] Iatropoulos, P., Gardella, R., Valsecchi, P., Magri, C., Ratti, C., Podavini, D., Rossi, G., Gennarelli, M., Sacchetti, E. and Barlati, S. (2009) Association study and mutational screening of SYNGR1 as a candidate susceptibility gene for schizophrenia. Psychiatric Genetics, 19, 237-243. doi:10.1097/YPG.0b013e32832cebf7
[263] Wang, Y., Yu, L., Zhao, T., Xu, J., Liu, Z., Liu, Y., Feng, G., He, L. and Li, S. (2009) No association between bipolar disorders and syngr1 or synapsin II polymorphisms in the Han Chinese population. Psychiatry Research, 169, 167-168. doi:10.1016/j.psychres.2008.12.005
[264] Corradini, I., Verderio, C., Sala, M., Wilson, M.C. and Matteoli, M. (2009) SNAP-25 in neuropsychiatric disorders. Annals of the New York Academy of Sciences, 1152, 93-99. doi:10.1111/j.1749-6632.2008.03995.x
[265] McKee, A.G., Loscher, J.S., O’Sullivan, N.C., Chadderton, N., Palfi, A., Batti, L., Sheridan, G.K., O’Shea, S., Moran, M., McCabe, O., Fernández, A.B., Pangalos, M.N., O’Connor, J.J., Regan, C.M., O’Connor, W.T., Humphries, P., Farrar, G.J. and Murphy, K.J. (2009) AAV-mediated chronic over-expression of SNAP-25 in adult rat dorsal hippocampus impairs memory-associated synaptic plasticity. Journal of Neurochemistry, 112, 991-1004. doi:10.1111/j.1471-4159.2009.06516.x
[266] Fellerhoff, B. and Wank, R. (2009) Transporter associated with antigen processing and the chaperone tapasin: Are non-classical HLA genes keys to the pathogenesis of schizophrenia? Medical Hypotheses, 72, 535-538. doi:10.1016/j.mehy.2008.12.036
[267] Ohi, K., Hashimoto, R., Yasuda, Y., Kiribayashi, M., Iike, N., Yoshida, T., Azechi, M., Ikezawa, K., Takahashi, H., Morihara, T., Ishii, R., Tagami, S., Iwase, M., Okochi, M., Kamino, K., Kazui, H., Tanaka, T., Kudo, T. and Takeda, M. (2009) TATA box-binding protein gene is associated with risk for schizophrenia, age at onset and prefrontal function. Genes, Brain and Behavior, 8, 473-480. doi:10.1111/j.1601-183X.2009.00497.x
[268] Geser, F., Robinson, J.L., Malunda, J.A., Xie, S.X., Clark, C.M., Kwong, L.K., Moberg, P.J., Moore, E.M., Van Deerlin, V.M., Lee, V.M., Arnold, S.E. and Trojanowski, J.Q. (2010) Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Archives of Neurology, 67, 1238-1250. doi:10.1001/archneurol.2010.254
[269] Wirgenes, K.V., Sonderby, I.E., Haukvik, U.K., Mattingsdal, M., Tesli, M., Athanasiu, L., Sundet, K., Rossberg, J.I., Dale, A.M., Brown, A.A., Agartz, I., Melle, I., Djurovic, S. and Andreassen, O.A. (2012) TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. Translational Psychiatry, 2, e112. doi:10.1038/tp.2012.39
[270] Locke, M., Tinsley, C.L., Benson, M.A. and Blake, D.J. (2009) TRIM32 is an E3 ubiquitin ligase for dysbindin. Human Molecular Genetics, 18, 2344-2358. doi:10.1093/hmg/ddp167
[271] Grover, D., Verma, R., Goes, F.S., Mahon, P.L., Gershon, E.S., McMahon, F.J., Potash, J.B., NIMH Genetics Initiative Bipolar disorders Collaborative, Bipolar disorders Phenome Group, Gershon, E.S., McMahon, F.J. and Potash, J.B. (2009) Family-based association of YWHAH in psychotic bipolar disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150, 977-983. doi:10.1002/ajmg.b.30927
[272] Amato, R., Pinelli, M., Monticelli, A., Miele, G., Cocozza, S. (2010) Schizophrenia and vitamin D-related genes could have been subject to latitude-driven adaptation. BMC Evolutionary Biology, 10, 351. doi:10.1186/1471-2148-10-351
[273] Derakhshandeh, S., Saadat, I., Farrashbandi, H. and Saadat, M. (2009) Association between genetic polymorphism of XRCC1 Arg194Trp and risk of schizophrenia. Psychiatry Research, 169, 186. doi:10.1016/j.psychres.2009.03.022
[274] Wang, Y., Wang, L., Li, X., Liu, B., Zhao, Q., Chen, P., Wang, T., Li, T., Ji, J., Yang, F., Wang, Q., Wang, J., Xiao, Y., Xu, Y., Feng, G., Peng, Z., He, L. and He, G. (2010) Polymorphisms of XRCC4 are involved in reduced colorectal cancer risk in Chinese schizophrenia patients. BMC Cancer, 10, 523. doi:10.1186/1471-2407-10-523
[275] Liu, J., Zhou, G., Ji, W., Li, J., Li, T., Wang, T., Li, Y., Zeng, Z., Hu, Z., Zheng, L., Ji, J., Wang, Y., Wei, Z., Feng, G., He, L. and Shi, Y. (2010) No association of the YWHAE gene with schizophrenia, major depressive disorder or bipolar disorders in the Han Chinese population. Behavior Genetics, 41, 557-564. doi:10.1007/s10519-010-9426-1
[276] Esslinger, C., Walter, H., Kirsch, P., Erk, S., Schnell, K., Arnold, C., Haddad, L., Mier, D., Opitz von Boberfeld, C., Raab, K., Witt, S.H., Rietschel, M., Cichon, S. and Meyer-Lindenberg, A. (2009) Neural mechanisms of a genome-wide supported psychosis variant. Science, 324, 605. doi:10.1126/science.1167768
[277] Donohoe, G., Rose, E., Frodl, T., Morris, D., Spoletini, I., Adriano, F., Bernardini, S., Caltagirone, C., Bossù, P., Gill, M., Corvin, A.P. and Spalletta, G. (2011) ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. Neuroimage, 54, 2132-2137. doi:10.1016/j.neuroimage.2010.09.089
[278] Dwyer, S., Williams, H., Holmans, P., Moskvina, V., Craddock, N., Owen, M.J. and O’Donovan, M.C. (2010) No evidence that rare coding variants in ZNF804A confer risk of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B, 1411-1416. doi:10.1002/ajmg.b.31117
[279] Donohoe, G., Morris, D.W. and Corvin, A. (2010) The psychosis susceptibility gene ZNF804A: Associations, functions, and phenotypes. Schizophrenia Bulletin, 36, 904-909. doi:10.1093/schbul/sbq080
[280] Kim, A.H., Parker, E.K., Williamson, V., McMichael, G.O., Fanous, A.H. and Vladimirov, V.I. (2012) Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137. Schizophrenia Research. 141, 60-64. doi:10.1016/j.schres.2012.06.038
[281] Yurov, Y.B., Iourov, I.Y., Vorsanova, S.G., Liehr, T., Kolotii, A.D., Kutsev, S.I., Pellestor, F., Beresheva, A.K., Demidova, I.A., Kravets, V.S., Monakhov, V.V. and Soloviev, I.V. (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One, 2, e558. doi:10.1371/journal.pone.0000558
[282] Iourov, I.Y., Vorsanova, S.G., Liehr, T. and Yurov, Y.B. (2009) Aneuploidy in the normal, Alzheimer disease and ataxia-telangiectasia brain: Differential expression and pathological meaning. Neurobiology of Disease, 34, 212-220. doi:10.1016/j.nbd.2009.01.003
[283] Yurov, Y.B., Iourov, I.Y., Vorsanova, S.G., Demidova, I.A., Kravetz, V.S., Beresheva, A.K., Kolotii, A.D., Monakchov, V.V., Uranova, N.A., Vostrikov, V.M., Soloviev, I.V. and Liehr, T. (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophrenia Research, 98, 139-147. doi:10.1016/j.schres.2007.07.035
[284] Fromer, M., Moran, J.L., Chambert, K., Banks, E., Bergen, S.E., Ruderfer, D.M., Handsaker, R.E., McCarroll, S.A., O’Donovan, M.C., Owen, M.J., Kirov, G., Sullivan, P.F., Hultman, C.M., Sklar, P. and Purcell, S.M. (2012) Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. The American Journal of Human Genetics, 91, 597-607. doi:10.1016/j.ajhg.2012.08.005
[285] Ikeda, M., Aleksic, B., Kirov, G., Kinoshita, Y., Yamanouchi, Y., Kitajima, T., Kawashima, K., Okochi, T., Kishi, T., Zaharieva, I., Owen, M.J., O’Donovan, M.C., Ozaki, N. and Iwata, N. (2010) Copy number variation in schizophrenia in the Japanese population. Biological Psychiatry, 67, 283-286. doi:10.1016/j.biopsych.2009.08.034
[286] Tabarés-Seisdedos, R. and Rubenstein, J.L. (2009) Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: Implications for schizophrenia, autism and cancer. Molecular Psychiatry, 14, 563-589. doi:10.1038/mp.2009.2
[287] Need, A.C., Attix, D.K., McEvoy, J.M., Cirulli, E.T., Linney, K.L., Hunt, P., Ge, D., Heinzen, E.L., Maia, J.M., Shianna, K.V., Weale, M.E., Cherkas, L.F., Clement, G., Spector, T.D., Gibson, G. and Goldstein, D.B. (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genetics, 5, e1000373. doi:10.1371/journal.pgen.1000373
[288] Kirov, G., Grozeva, D., Norton, N., Ivanov, D., Mantripragada, K.K., Holmans, P., International Schizophrenia Consortium; Wellcome Trust Case Control Consortium, Craddock, N., Owen, M.J. and O’Donovan, M.C. (2009) Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Human Molecular Genetics, 18, 1497-1503. doi:10.1093/hmg/ddp043
[289] Maziade, M., Chagnon, Y.C., Roy, M.A., Bureau, A., Fournier, A. and Mérette, C. (2009) Chromosome 13q13-q14 locus overlaps mood and psychotic disorders: The relevance for redefining phenotype. European Journal of Human Genetics, 17, 1034-1042. doi:10.1038/ejhg.2008.268
[290] de Kovel, C.G., Trucks, H., Helbig, I., Mefford, H.C., Baker, C., Leu, C., Kluck, C., Muhle, H., von Spiczak, S., Ostertag, P., Obermeier, T., Kleefuss-Lie, A.A., Hallmann, K., Steffens, M., Gaus, V., Klein, K.M., Hamer, H.M., Rosenow, F., Brilstra, E.H., Trenité, D.K.-N., Swinkels, M.E., Weber, Y.G., Unterberger, I., Zimprich, F., Urak, L., Feucht, M., Fuchs, K., Moller, R.S., Hjalgrim, H., De Jonghe, P., Suls, A., Rückert, I.M., Wichmann, H.E., Franke, A., Schreiber, S., Nürnberg, P., Elger, C.E., Lerche, H., Stephani, U., Koeleman, B.P., Lindhout, D., Eichler, E.E. and Sander, T. (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain, 133, 23-32. doi:10.1093/brain/awp262
[291] Dibbens, L.M., Mullen, S., Helbig, I., Mefford, H.C., Bayly, M.A., Bellows, S., Leu, C., Trucks, H., Obermeier, T., Wittig, M., Franke, A., Caglayan, H., Yapici, Z., EPICURE Consortium, Sander, T., Eichler, E.E., Scheffer, I.E., Mulley, J.C. and Berkovic, S.F. (2009) Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: Precedent for disorders with complex inheritance. Human Molecular Genetics, 18, 3626-3631. doi:10.1093/hmg/ddp311
[292] Ben-Shachar, S., Lanpher, B., German, J.R., Qasaymeh, M., Potocki, L., Nagamani, S.C., Franco, L.M., Malphrus, A., Bottenfield, G.W., Spence, J.E., Amato, S., Rousseau, J.A., Moghaddam, B., Skinner, C., Skinner, S.A., Bernes, S., Armstrong, N., Shinawi, M., Stankiewicz, P., Patel, A., Cheung, S.W., Lupski, J.R., Beaudet, A.L. and Sahoo, T. (2009) Microdeletion 15q13.3: A locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. Journal of Medical Genetics, 46, 382-388. doi:10.1136/jmg.2008.064378
[293] Leonard, S. and Freedman, R. (2006) Genetics of chromosome 15q13-q14 in schizophrenia. Biological Psychiatry, 60, 115-122. doi:10.1016/j.biopsych.2006.03.054
[294] Pagnamenta, A.T., Wing, K., Sadighi Akha, E., Knight, S.J., Bolte, S., Schmotzer, G., Duketis, E., Poustka, F., Klauck, S.M., Poustka, A., Ragoussis, J., Bailey, A.J., Monaco, A.P. and International Molecular Genetic Study of Autism Consortium. (2009) A 15q13.3 microdeletion segregating with autism. European Journal of Human Genetics, 17, 687-692. doi:10.1038/ejhg.2008.228
[295] Ingason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietilainen, O.P., Buizer-Voskamp, J.E., Strengman, E., Francks, C., Muglia, P., Gylfason, A., Gustafsson, O., Olason, P.I., Steinberg, S., Hansen, T., Jakobsen, K.D., Rasmussen, H.B., Giegling, I., Moller, H.J., Hartmann, A., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Bramon, E., Kiemeney, L.A., Franke, B., Murray, R., Vassos, E., Toulopoulou, T., Mühleisen, T.W., Tosato, S., Ruggeri, M., Djurovic, S., Andreassen, O.A., Zhang, Z., Werge, T., Ophoff, R.A., Group Investigators, Rietschel, M., Nothen, M.M., Petursson, H., Stefansson, H., Peltonen, L., Collier, D., Stefansson, K. and St Clair, D.M. (2011) Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Molecular Psychiatry, 16, 17-25. doi:10.1038/mp.2009.101
[296] Jolin, E.M., Weller, R.A. and Weller, E.B. (2009) Psychosis in children with velocardiofacial syndrome (22q11.2 deletion syndrome). Current Psychiatry Reports, 11, 99-105. doi:10.1007/s11920-009-0016-y
[297] Shashi, V., Kwapil, T.R., Kaczorowski, J., Berry, M.N., Santos, C.S., Howard, T.D., Goradia, D., Prasad, K., Vaibhav, D., Rajarethinam, R., Spence, E. and Keshavan, M.S. (2010) Evidence of gray matter reduction and dysfunction in chromosome 22q11.2 deletion syndrome. Psychiatry Research, 181, 1-8. doi:10.1016/j.pscychresns.2009.07.003
[298] Guilmatre, A., Dubourg, C., Mosca, A.L., Legallic, S., Goldenberg, A., Drouin-Garraud, V., Layet, V., Rosier, A., Briault, S., Bonnet-Brilhault, F., Laumonnier, F., Odent, S., Le Vacon, G., Joly-Helas, G., David, V., Bendavid, C., Pinoit, J.M., Henry, C., Impallomeni, C., Germano, E., Tortorella, G., Di Rosa, G., Barthelemy, C., Andres, C., Faivre, L., Frébourg, T., Saugier Veber, P. and Campion, D. (2009) Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Archives of General Psychiatry, 66, 947-956. doi:10.1001/archgenpsychiatry.2009.80
[299] Meechan, D.W., Tucker, E.S., Maynard, T.M. and LaMantia, A.S. (2009) Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome. Proceedings of the National Academy of Sciences, 106, 16434-16445. doi:10.1073/pnas.0905696106
[300] Prasad, S.E., Howley, S. and Murphy, K.C. (2008) Candidate genes and the behavioral phenotype in 22q11.2 deletion syndrome. Developmental Disabilities Research Reviews, 14, 26-34. doi:10.1002/ddrr.5
[301] Vincent, J.B., Paterson, A.D., Strong, E., Petronis, A. and Kennedy, J.L. (2000) The unstable trinucleotide repeat story of major psychosis. American Journal of Medical Genetics, 97, 77-97. doi:10.1002/(SICI)1096-8628(200021)97:1<77::AID-AJMG11>3.0.CO;2-3
[302] Bruce, H.A., Sachs, N., Rudnicki, D.D., Lin, S.G., Willour, V.L., Cowell, J.K., Conroy, J., McQuaid, D.E., Rossi, M., Gaile, D.P., Nowak, N.J., Holmes, S.E., Sklar, P., Ross, C.A., Delisi, L.E. and Margolis, R.L. (2009) Long tandem repeats as a form of genomic copy number variation: Structure and length polymorphism of a chromosome 5p repeat in control and schizophrenia populations. Psychiatric Genetics, 19, 64-71. doi:10.1097/YPG.0b013e3283207ff6
[303] Hamshere, M.L., Schulze, T.G., Schumacher, J., Corvin, A., Owen, M.J., Jamra, R.A., Propping, P., Maier, W., Orozco y Diaz, G., Mayoral, F., Rivas, F., Jones, I., Jones, L., Kirov, G., Gill, M., Holmans, P.A., Nothen, M.M., Cichon, S., Rietschel, M. and Craddock, N. (2009) Mood-incongruent psychosis in bipolar disorders: Conditional linkage analysis shows genome-wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar disorders, 11, 610-620. doi:10.1111/j.1399-5618.2009.00736.x
[304] Shaffer, L.G., Theisen, A., Bejjani, B.A., Ballif, B.C., Aylsworth, A.S., Lim, C., McDonald, M., Ellison, J.W., Kostiner, D., Saitta, S. and Shaikh, T. (2007) The discovery of microdeletion syndromes in the post-genomic era: Review of the methodology and characterization of a new 1q41q42 microdeletion syndrome. Genetics in Medicine, 9, 607-616. doi:10.1097/GIM.0b013e3181484b49
[305] Slavotinek, A.M. (2008) Novel microdeletion syndromes detected by chromosome microarrays. Human Genetics, 124, 1-17. doi:10.1007/s00439-008-0513-9
[306] Glessner, J.T., Wang, K., Cai, G., Korvatska, O., Kim, C.E., Wood, S., Zhang, H., Estes, A., Brune, C.W., Bradfield, J.P., Imielinski, M., Frackelton, E.C., Reichert, J., Crawford, E.L., Munson, J., Sleiman, P.M., Chiavacci, R., Annaiah, K., Thomas, K., Hou, C., Glaberson, W., Flory, J., Otieno, F., Garris, M., Soorya, L., Klei, L., Piven, J., Meyer, K.J., Anagnostou, E., Sakurai, T., Game, R.M., Rudd, D.S., Zurawiecki, D., McDougle, C.J., Davis, L.K., Miller, J., Posey, D.J., Michaels, S., Kolevzon, A., Silverman, J.M., Bernier, R., Levy, S.E., Schultz, R.T., Dawson, G., Owley, T., McMahon, W.M., Wassink, T.H., Sweeney, J.A., Nurnberger, J.I., Coon, H., Sutcliffe, J.S., Minshew, N.J., Grant, S.F., Bucan, M., Cook, E.H., Buxbaum, J.D., Devlin, B., Schellenberg, G.D. and Hakonarson, H. (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459, 569-573. doi:10.1038/nature07953
[307] Bucan, M., Abrahams, B.S., Wang, K., Glessner, J.T., Herman, E.I., Sonnenblick, L.I., Alvarez Retuerto, A.I., Imielinski, M., Hadley, D., Bradfield, J.P., Kim, C., Gidaya, N.B., Lindquist, I., Hutman, T., Sigman, M., Kustanovich, V., Lajonchere, C.M., Singleton, A., Kim, J., Wassink, T.H., McMahon, W.M., Owley, T., Sweeney, J.A., Coon, H., Nurnberger, J.I., Li, M., Cantor, R.M., Minshew, N.J., Sutcliffe, J.S., Cook, E.H., Dawson, G., Buxbaum, J.D., Grant, S.F., Schellenberg, G.D., Geschwind, D.H. and Hakonarson, H. (2009) Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genetics, 5, e1000536. doi:10.1371/journal.pgen.1000536
[308] Kumar, R.A. and Christian, S.L. (2009) Genetics of autism spectrum disorders. Current Neurology and Neuroscience Reports, 9, 188-197. doi:10.1007/s11910-009-0029-2
[309] Yan, J., Zhang, F., Brundage, E., Scheuerle, A., Lanpher, B., Erickson, R.P., Powis, Z., Robinson, H.B., Trapane, P.L., Stachiw-Hietpas, D., Keppler-Noreuil, K.M., Lalani, S.R., Sahoo, T., Chinault, A.C., Patel, A., Cheung, S.W. and Lupski, J.R. (2009) Genomic duplication resulting in increased copy number of genes encoding the sister chromatid cohesion complex conveys clinical consequences distinct from Cornelia de Lange. Journal of Medical Genetics, 46, 626-634. doi:10.1136/jmg.2008.062471
[310] Kong, A., Frigge, M.L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S.A., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Wong, W.S., Sigurdsson, G., Walters, G.B., Steinberg, S., Helgason, H., Thorleifsson, G., Gudbjartsson, D.F., Helgason, A., Magnusson, O.T., Thorsteinsdottir, U. and Stefansson, K. (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471-475. doi:10.1038/nature11396
[311] Sun, G., Yan, J., Noltner, K., Feng, J., Li, H., Sarkis, D.A., Sommer, S.S. and Rossi, J.J. (2009) SNPs in human miRNA genes affect biogenesis and function. RNA, 15, 1640-1651. doi:10.1261/rna.1560209
[312] Feng, J., Sun, G., Yan, J., Noltner, K., Li, W., Buzin, C.H., Longmate, J., Heston, L.L., Rossi, J. and Sommer, S.S. (2009) Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One, 4, e6121. doi:10.1371/journal.pone.0006121
[313] Burmistrova, O.A., Goltsov, A.Y., Abramova, L.I., Kaleda, V.G., Orlova, V.A. and Rogaev, E.I. (2007) MicroRNA in schizophrenia: Genetic and expression analysis of miR-130b (22q11). Biochemistry (Moscow), 72, 578-582. doi:10.1134/S0006297907050161
[314] Gregory, R.I., Chendrimada, T.P. and Shiekhattar, R. (2006) MicroRNA biogenesis: Isolation and characterization of the microprocessor complex. Methods in Molecular Biology, 342, 33-47.
[315] Zhu, Y., Kalbfleisch, T., Brennan, M.D. and Li, Y. (2009) MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophrenia Research, 109, 86-89. doi:10.1016/j.schres.2009.01.022
[316] Cummings, E., Donohoe, G., Hargreaves, A., Moore, S., Fahey, C., Dinan, T.G., McDonald, C., O’Callaghan, E., O’Neill, F.A., Waddington, J.L., Murphy, K.C., Morris, D.W., Gill, M. and Corvin, A. (2012) Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137. Neuroscience Letters (in press). doi:10.1016/j.neulet.2012.08.065
[317] Pinsonneault, J.K., Papp, A.C. and Sadée, W. (2006) Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) in human brain: Dissection of epigenetic and genetic factors. Human Molecular Genetics, 15, 2636-2649. doi:10.1093/hmg/ddl192
[318] Crews, D. (2008) Epigenetics and its implications for behavioural neuroendocrinology. Neuroendocrinology, 29, 344-357. doi:10.1016/j.yfrne.2008.01.003
[319] Feng, J. and Fan, G. (2009) The role of DNA methylation in the central nervous system and neuropsychiatric disorders. International Review of Neurobiology, 89, 67-84. doi:10.1016/S0074-7742(09)89004-1
[320] Reichenberg, A., Mill, J. and MacCabe, J.H. (2009) Epigenetics, genomic mutations and cognitive function. Cognitive Neuropsychiatry, 14, 377-390. doi:10.1080/13546800902978417
[321] MacDonald, J.L. and Roskams, A.J. (2009) Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Progress in Neurobiology, 88, 170-183. doi:10.1016/j.pneurobio.2009.04.002
[322] Urdinguio, R.G., Sanchez-Mut, J.V. and Esteller, M. (2009) Epigenetic mechanisms in neurological diseases: Genes, syndromes, and therapies. The Lancet Neurology, 8, 1056-1072. doi:10.1016/S1474-4422(09)70262-5
[323] Bronner, C., Chataigneau, T., Schini-Kerth, V.B. and Landry, Y. (2007) The “Epigenetic Code Replication Machinery”, ECREM: A promising drugable target of the epigenetic cell memory. Current Medicinal Chemistry, 14, 2629-2641. doi:10.2174/092986707782023244
[324] Chavez-Blanco, A., Perez-Plasencia, C., Perez-Cardenas, E., Carrasco-Legleu, C., Rangel-Lopez, E., Segura-Pacheco, B., Taja-Chayeb, L., Trejo-Becerril, C., Gonzalez-Fierro, A., Candelaria, M., Cabrera, G. and Duenas-Gonzalez, A. (2006) Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell International, 6, 2. doi:10.1186/1475-2867-6-2
[325] Abdolmaleky, H.M., Smith, C.L., Zhou, J.R. and Thiagalingam, S. (2008) Epigenetic alterations of the dopaminergic system in major psychiatric disorders. Methods in Molecular Biology, 448, 187-212. doi:10.1007/978-1-59745-205-2_9
[326] Kazantsev, A.G. and Thompson, L.M. (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews Drug Discovery, 7, 854-868. doi:10.1038/nrd2681
[327] Dong, E., Nelson, M., Grayson, D.R., Costa, E. and Guidotti, A. (2008) Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proceedings of the National Academy of Sciences, 105, 13614-13619. doi:10.1073/pnas.0805493105
[328] Guidotti, A., Dong, E., Kundakovic, M., Satta, R., Grayson, D.R. and Costa, E. (2009) Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends in Pharmacological Sciences, 30, 55-60. doi:10.1016/
[329] Costa, E., Chen, Y., Dong, E., Grayson, D.R., Kundakovic, M., Maloku, E., Ruzicka, W., Satta, R., Veldic, M., Zhubi, A. and Guidotti, A. (2009) GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability. Expert Review of Neurotherapeutics, 9, 87-98. doi:10.1586/14737175.9.1.87
[330] Dong, E., Agis-Balboa, R.C., Simonini, M.V., Grayson, D.R., Costa, E. and Guidotti, A. (2005) Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proceedings of the National Academy of Sciences of USA, 102, 12578-12583. doi:10.1073/pnas.0505394102
[331] Grayson, D.R., Chen, Y., Dong, E., Kundakovic, M. and Guidotti, A. (2009) From trans-methylation to cytosine methylation: Evolution of the methylation hypothesis of schizophrenia. Epigenetics, 4, 144-149. doi:10.4161/epi.4.3.8534
[332] Gavin, D.P., Kartan, S., Chase, K., Jayaraman, S. and Sharma, R.P. (2009) Histone deacetylase inhibitors and candidate gene expression: An in vivo and in vitro approach to studying chromatin remodeling in a clinical population. Journal of Psychiatric Research, 43, 870-876. doi:10.1016/j.jpsychires.2008.12.006
[333] Li, J., Harris, R.A., Cheung, S.W., Coarfa, C., Jeong, M., Goodell, M.A., White, L.D., Patel, A., Kang, S.H., Shaw, C., Chinault, A.C., Gambin, T., Gambin, A., Lupski, J.R. and Milosavljevic, A. (2012) Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome. PLoS Genetics. 8, e1002692. doi:10.1371/journal.pgen.1002692
[334] Rezin, G.T., Amboni, G., Zugno, A.I., Quevedo, J. and Streck, E.L. (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochemical Research, 34, 1021-1029. doi:10.1007/s11064-008-9865-8
[335] Shao, L., Martin, M.V., Watson, S.J., Schatzberg, A., Akil, H., Myers, R.M., Jones, E.G., Bunney, W.E. and Vawter, M.P. (2008) Mitochondrial involvement in psychiatric disorders. Annals of Medicine, 40, 281-295. doi:10.1080/07853890801923753
[336] Rollins, B., Martin, M.V., Sequeira, P.A., Moon, E.A., Morgan, L.Z., Watson, S.J., Schatzberg, A., Akil, H., Myers, R.M., Jones, E.G., Wallace, D.C., Bunney WE and Vawter MP, (2009) Mitochondrial variants in schizophrenia, bipolar disorders, and major depressive disorder. PLoS One, 4, e4913. doi:10.1371/journal.pone.0004913
[337] Munakata, K., Iwamoto, K., Bundo, M. and Kato, T. (2005) Mitochondrial DNA 3243A > G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorders and schizophrenia. Biological Psychiatry, 57, 525-532. doi:10.1016/j.biopsych.2004.11.041
[338] Washizuka S, Iwamoto K, Kakiuchi C, Bundo M and Kato T. (2009) Expression of mitochondrial complex I subunit gene NDUFV2 in the lymphoblastoid cells derived from patients with bipolar disorders and schizophrenia. Neuroscience Reseasrch, 63, 199-204. doi:10.1016/j.neures.2008.12.004
[339] Park, Y.U., Jeong, J., Lee, H., Mun, J.Y., Kim, J.H., Lee, J.S., Nguyen, M.D., Han, S.S., Suh, P.G. and Park, S.K. (2010) Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proceedings of the National Academy of Sciences, 107, 17785-17790. doi:10.1073/pnas.1004361107
[340] Bilder, R.M., Sabb, F.W., Parker, D.S., Kalar, D., Chu, W.W., Fox, J., Freimer, N.B. and Poldrack, R.A. (2009) Cognitive ontologies for neuropsychiatric phenomics research. Cognitive Neuropsychiatry, 14, 419-450. doi:10.1080/13546800902787180
[341] Meda, S.A., Jagannathan, K., Gelernter, J., Calhoun, V.D., Liu, J., Stevens, M.C. and Pearlson, G.D. (2010) A pilot multivariate parallel ICA study to investigate differential linkage between neural networks and genetic profiles in schizophrenia. Neuroimage, 53, 1007-1015. doi:10.1016/j.neuroimage.2009.11.052
[342] Bergen, S.E., Fanous, A.H., Walsh, D., O’Neill, F.A. and Kendler, K.S. (2009) Polymorphisms in SLC6A4, PAH, GABRB3, and MAOB and modification of psychotic disorder features. Schizophrenia Research, 109, 94-97. doi:10.1016/j.schres.2009.02.009
[343] Chu TT, Liu Y and Kemether E. (2009) Thalamic transcriptome screening in three psychiatric states. Journal of Human Genetics, 54, 665-675. doi:10.1038/jhg.2009.93
[344] Dean, B., Boer, S., Gibbons, A., Money, T. and Scarr. E. (2009) Recent advances in post-mortem pathology and neurochemistry in schizophrenia. Current Opinion in Psychiatry, 22, 154-160. doi:10.1097/YCO.0b013e328323d52e
[345] Martins-de-Souza, D., Gattaz, W.F., Schmitt, A., Novello, J.C., Marangoni, S., Turck, C.W. and Dias-Neto, E. (2009) Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry, 9, 17. doi:10.1186/1471-244X-9-17
[346] Kuzman, M.R., Medved, V., Terzic, J. and Krainc, D. (2009) Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia. Journal of Psychiatric Research, 43, 1073-1077. doi:10.1016/j.jpsychires.2009.03.005
[347] Quinones, M.P. and Kaddurah-Daouk, R. (2009) Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiology of Disease, 35, 165-76. doi:10.1016/j.nbd.2009.02.019
[348] Need, A.C., Motulsky, A.G. and Goldstein, D.B. (2005) Priorities and standards in pharmacogenetic research. Nature Genetics, 37, 671-681. doi:10.1038/ng1593
[349] Johnson, A.D., Wang, S. and Sadee, W. (2005) Polymorphisms affecting gene regulation and mRNA processing: Broad implications for pharmacogenetics. Pharmacology & Therapeutics, 106, 19-38. doi:10.1016/j.pharmthera.2004.11.001
[350] Ishikawa, T., Onishi, Y., Hirano, H., Oosumi, K., Nagakura, M. and Tarui, S. (2004) Pharmacogenomics of drug transporters: A new approach to functional analysis of the genetic polymorphisms of ABCB1 (P-glycoprotein/MDR1). Biological & Pharmaceutical Bulletin, 27, 939-948. doi:10.1248/bpb.27.939
[351] Nishimura, M. and Naito, S. (2008) Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metabolism and Pharmacokinetics, 23, 22-44. doi:10.2133/dmpk.23.22
[352] Agrawal, N., Dasaradhi, P.V., Mohmmed, A., Malhotra, P., Bhatnagar, R.K. and Mukherjee, S.K. (2003) RNA interference: biology, mechanism, and applications. Microbiology and Molecular Biology Reviews, 67, 657-685. doi:10.1128/MMBR.67.4.657-685.2003
[353] Leung, R.K. and Whittaker, P.A. (2005) RNA interference: From gene silencing to gene-specific therapeutics. Pharmacology & Therapeutics, 107, 222-239. doi:10.1016/j.pharmthera.2005.03.004
[354] Gonzalez-Alegre, P. (2007) Therapeutic RNA interference for neurodegenerative diseases: From promise to progress. Pharmacology & Therapeutics, 114, 34-55. doi:10.1016/j.pharmthera.2007.01.003
[355] Ying, S.Y. and Lin, S.L. (2009) Intron-mediated RNA interference and microRNA biogenesis. Methods in Molecular Biology, 487, 387-413. doi:10.1007/978-1-60327-547-7_19
[356] Boudreau, R.L., Spengler, R.M., and Davidson, B.L. (2011) Rational design of therapeutic siRNAs: minimizing off-targeting potential to improve the safety of RNAi therapy for Huntington’s disease. Molecular Therapy, 19, 2169-2177. doi:10.1038/mt.2011.185

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.