Share This Article:

TE, TM Fields in Toroidal Electromagnetism

Abstract Full-Text HTML XML Download Download as PDF (Size:136KB) PP. 25-28
DOI: 10.4236/am.2013.41006    4,688 Downloads   6,340 Views  
Author(s)    Leave a comment

ABSTRACT

We analyze the behaviour of TE, TM electromagnetic fields in a toroidal space through Maxwell and wave equations. Their solutions are discussed in a space endowed with a refractive index making separable the wave equations.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Hillion, "TE, TM Fields in Toroidal Electromagnetism," Applied Mathematics, Vol. 4 No. 1, 2013, pp. 25-28. doi: 10.4236/am.2013.41006.

References

[1] V. H. Weston, “Solutions of the Toroidal Wave Equation and Their Applications,” Ph.D. Thesis, University of Toronto, Toronto, 1954.
[2] P. Laurin, “Scattering by a Torus, Ph.D. Thesis, University of Michigan, Ann Arbor, 1967.
[3] W. N.-C. Sy, “Magnetic Field Due to Helical Currents on a Torus,” Journal of Physics A: Mathematical and General, Vol. 14, No. 8, 1981, pp. 2095-2112. doi:10.1088/0305-4470/14/8/031
[4] G. Venkov, “Low Frequency Electromagnetic Scattering by a Perfect Conducting Torus, the Rayleigh Approximation,” International Journal of Applied Electromagnetism and Mechanics, Vol. 24, 2007, pp. 96-103.
[5] J. A. Hernandez and A. K. T. Assis, “Electric Potential for a Resistive Toroidal Conductor Carrying a Steady Azimuthal Current,” Physical Review E, Vol. 68, No. 4, 2003, 10 p.
[6] J. A. Hernandez and A. K. T. Assis, “Surface Charges and External Electric Field in a Toroid Carrying a Steady Current,” Brazilian Journal of Physics, Vol. 34, No. 4b, 2004, pp. 1738-1744.
[7] U. Lehonardt and T. Tyc, “Broadband Invisibility by Non-Euclidean Cloaking,” Science, Vol. 313, No. 5910, 2009, pp. 110-112. http://www.sciencemag.org/cgi/data/116632/DC1/1
[8] P. M. Morse and H. Feshbach, “Methods of Theoretical Physics,” Mac-Graw Hill, New York, 1953.
[9] H. Margenau and E. M. Murphy, “The Mathematics of Physics and Chemistry,” Van Nostrand, New York, 1955.
[10] H. Bateman, “Partial Differential Equations of Mathematical Physics,” University Press, Cambridge, 1959.
[11] P. Hillion, “Rayleigh Acoustic Scattering from a Torus,” Journal of Applied Mathematics, Vol. 1, No. 1, 2011, pp. 1-11.
[12] F. W. J. Olver, “Asymptotic and Special Functions,” Academic Press, New York, 1974.
[13] P. C. Fereira, I. Kagan and B. Tekir, “Toroidal Compactification in String Theory from Chern-Simons Theory,” Nuclear Physics B, Vol. 689, No. 1-2, 2000, pp. 167-195. doi:10.1016/S0550-3213(00)00407-7
[14] M. Bianchi, G. Pradisi and A. Sagnotti, “Toroidal Compactification and Symmetry Breaking in Open String Theories,” Nuclear Physics B, Vol. 376, No. 2, 1992, pp. 369-386. doi:10.1016/0550-3213(92)90129-Y
[15] A. Guth, “The Inflationary Universe. The Quest for a New Theory of Cosmic Origin,” Perseus Books, New York, 1997.
[16] A. A. Starobinski, “A New Type of Isotropic Cosmological Models without Singularities,” Physics Letters B, Vol. 91, No. 1, 1980, pp. 99-102. doi:10.1016/0370-2693(80)90670-X
[17] M. Mc. Guigan, “Constraints for Toroidal Cosmology,” Physical Review E, Vol. 41, No. 10, 1990, pp. 3090-3100. doi:10.1103/PhysRevD.41.3090
[18] M. Bastero-Gill, P. H. Frampton and L. Mersini, “Modified Dispersion Relations from Closed Strings in Toroidal Cosmology,” Physical Review D, Vol. 65, No. 10, 2002, 12 p. doi:10.1103/PhysRevD.65.106002
[19] J. Smulevici, “On the Area of the Symmetric Orbits of Cosmological Space-Time with Toroidal or Hyperbolic Symmetry,” 2009.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.