Dehydrocyclization of n-Hexane over Heteropolyoxometalates Catalysts

Abstract

The catalytic dehydrocyclization of n-hexane was studied here for the first time using a number of compounds based on H3PMo12O40. The described catalysts were prepared by either replacing the acidic proton with counter-ions such as ammonium or transition metal cations (NH4+, Fe3+, K+), or by replacing Mo6+ with (Ni3+, Co3+, Mn3+) in the polyoxometalate framework, as reported earlier. For comparison purposes, the known (TBA)7PW11O39 catalyst system was used. All reactions were conducted at different temperatures in the range 200 - 450. The Keggin structure of these heteropolycompounds was ascertained by XRD, UV and IR measurements. 31P NMR measurements and thermal behaviour of the prepared catalysts were also studied. These modified polyoxometalates exhibited heterogeneous superacidic catalytic activities in dehydrocyclization of n-hexane into benzene, cyclohexane, cyclohexene and cyclohexadiene. The catalysts obtained by substituting the acidic proton or coordination atom exhibited higher selectivity and stability than the parent compound H3PMo12O40. Catalytic activity and selectivity were heavily dependent on the composition of the catalyst and on the reaction conditions. At higher temperatures, the catalyst exhibited higher conversion efficiency at the expense of selectivity. Using higher temperatures (>400) in the presence of hydrogen carrier gas, selectivity towards dehydrocyclization ceased and methane dominated. To explain the results, a plausible mechanism is presented, based on super-acidic nature of the catalyst systems.

Share and Cite:

A. Eid, O. Benlounes, H. Hilal, C. Rabia and S. Hocine, "Dehydrocyclization of n-Hexane over Heteropolyoxometalates Catalysts," Advances in Chemical Engineering and Science, Vol. 3 No. 1, 2013, pp. 82-92. doi: 10.4236/aces.2013.31010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. C. Gates, “Catalytic Chemistry,” John Wiley & Sons, Inc., New York, 1992.
[2] A. Corma, J. M. Serra and A. Chica, “Discovery of New Paraffin Isomerization Catalysts Based on SO42/ZrO2 and WOx/ZrO2 Applying Combinatorial Techniques,” Catalysis Today, Vol. 81, No. 3, 2003, pp. 495-506. doi:10.1016/S0920-5861(03)00148-2
[3] Y. Ono, “A Survey of the Mechanism in Catalytic Isomerization of Alkanes,” Catalysis Today, Vol. 81, No. 1, 2003, pp. 3-16. doi:10.1016/S0920-5861(03)00097-X
[4] B. Bachiller-Baeza, J. Alvarez-Rodríguez, A. Guerrero-Ruiz and I. Rodríguez-Ramos, “Support Effects on Ru-HPA Bifunctional Catalysts: Surface Characterization and Catalytic Performance,” Applied Catalysis A: General, Vol. 333, No. 2, 2007, pp. 281-289. doi:10.1016/j.apcata.2007.09.027
[5] M. H. Jordao, V. Simoes and D. Cardoso, “Zeolite Supported Pt-Ni Catalysts in n-Hexane Isornerization,” Applied Catalysis A: General, Vol. 319, 2007, pp. 1-6. doi:10.1016/j.apcata.2006.09.039
[6] Y. Gucbilmez, A. S. Yargic and I. Calis, “A Comparative Characterization of the HPA-MCM-48 Type Catalysts Produced by the Direct Hydrothermal and Room Temperature Synthesis Methods,” Journal of Nanomaterials, Vol. 2012, 2012, Article ID: 210437. doi:10.1155/2012/210437
[7] I. V. Kozhevnikov, “Heteropoly Acids and Related Compounds as Catalysts for Fine Chemical Synthesis,” Catalysis Reviews, Vol. 37, No. 2, 1995, pp. 311-352. doi:10.1080/01614949508007097
[8] I. V. Kozhevnikov, K. R. Kloetstra, A. Sinnema, H. W. Zandbergen and H. Van Bekkum, “Study of Catalysis Comprising Keteropoly Acid H3PW12O40 Supported on MCM-41 Molecular Sieve and Amorphous Silica,” Journal of Molecular Catalysis A: Chemical, Vol. 114, No. 1-3, 1996, pp. 287-298. doi:10.1016/S1381-1169(96)00328-7
[9] H. Hayashi and J. B. Moffat, “Methanol Conversion over Metal Salts of 12-Tungstophosphoric Acid,” Journal of Catalysis, Vol. 81, No. 1, 1983, pp. 61-66. doi:10.1016/0021-9517(83)90146-X
[10] T. Baba, H. Watanabe and Y. Ono, “Generation of Acidic Sites in Metal Salts of Heteropoly Acids,” Journal of Physical Chemistry, Vol. 87, No. 13, 1983, pp. 2406-2411. doi:10.1021/j100236a033
[11] K. Nowińska, “Catalytic Activity of Supported Heteropoly Acids for Reactions Requiring Strong Acid\Centres,” Journal of Chemical Society, Faraday Transactions, Vol. 87, No. 5, 1991, pp. 749-753. doi:10.1039/ft9918700749
[12] V. Haensel, “Process of Reforming a Gasoline with an Alumina-Platinum-Halogen Catalyst,” US Patent No. 2479109 and 2479110, 1949.
[13] H. E. Kluksdahl, “Reforming a Sulfur-Free Naphtha with a Platinum-Rhenium Catalyst,” US Patent No. 3415737, 1968.
[14] M. H. Jordao, V. Simoes and D. Cardoso, “Zeolite Supported Pt-Ni Catalysts in n-Hexane Isomerization,” Applied Catalysis A: General, Vol. 319, 2007, pp. 1-6. doi:10.1016/j.apcata.2006.09.039
[15] C. Rocchioccioli-Deltcheff, M. Fournier, R. Franck and R. Thouvenot, “Vibration Investigatios of Polyoxometalates. 2. Evidence for Anion-Anion Interaction in Molybdenum (VI) and Tungsten(VI) Compounds Related to the Keggin Structure,” Inorganic Chemistry, Vol. 22, No. 2, 1983, pp. 207-216. doi:10.1021/ic00144a006
[16] T. Mazari, S. Hocine, N. Salhi and C. Rabia, “Oxidation of Propane over Ammonium-Transition Metal Mixed Keggin Phosphomolybdate Salts,” Journal of Natural Gas Chemistry, Vol. 19, No. 1, 2010, pp. 54-60.
[17] O. Benlounes, S. Cheknoun, S. Mansouri, C. Rabia and S. Hocine, “Catalytic Activation of C-H Bonds of Hydrocarbons by Heteropolycompounds,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 42, No. 1, 2011, pp. 132-137.
[18] F. M. Zhang, M. P. Guo, H. Q. Ge and J. Wang, “Hydroxylation of Benzene with Hydrogen Peroxide over Highly Efficient Molybdovanadophos Phoric Heteropoly Acid Catalysts,” Chinese Journal of Chemical Engineering, Vol. 15, No. 6, 2007, pp. 895-898. doi:10.1016/S1004-9541(08)60021-X
[19] O. Benlounesa, S. Mansouria, C. Rabiab and S. Hocine, “Direct Oxidation of Methane to Oxygenates over Heteropolyanions,” Journal of Natural Gas Chemistry, Vol. 17, No. 3, 2008, pp. 309-312. doi:10.1016/S1003-9953(08)60070-5
[20] H. Kima, P. Kima, K. Leeb, S. H. Yeomc, J. Yia and I. K. Song, “Preparation and Characterization of Heteropoly Acid/Mesoporous Carbon Catalyst for the Vapor-Phase 2-Propanol Conversion Reaction,” Catalysis Today, Vol. 111, No. 3-4, 2006, pp. 361-365. doi:10.1016/j.cattod.2005.10.048
[21] J. N. Beltramini, “Studies in Surface Science and Catalysis,” Proceedings of the 3rd International Mesostructured Materials Symposium, Nanotechnology in Mesostructured Materials, Jeju, 8-11 July 2002, pp. 653-656.
[22] R. S. Drago, J. A. Dias and T. O. Maier, “An Acidity Scale for Bronsted Acids Including H3PW12O40,” Journal of American Chemical Society, Vol. 119, No. 33, 1997, pp. 7702-7710. doi:10.1021/ja9639123
[23] K. Nowinska, R. Fiedorow and J. Adamiec, “Catalytic Activity of Supported Heteropoly Acids for Reactions Requiring Strong Acid Centres,” Journal of the Chemical Society, Faraday Transactions, Vol. 87, No. 5, 1991, pp. 749-753. doi:10.1039/ft9918700749
[24] K. J. Nowinska, “Evidence for Superacid Sites on the Ammonium Salt of 12-Tungstophosphoric Acid from a Catalytic Test Reaction,” Journal of the Chemical Society, Chemical Communications, 1990, pp. 44-45. doi:10.1039/c39900000044
[25] C. Marchal-Roch, J. M. Millet and C. R. Acad, “Phosphomolybdic Heteropolycompounds as Oxidation Catalysts. Effect of Transition Metals as Counter-Ions,” Science Chemistry, Vol. 4, No. 5, 2001, pp. 321-329.
[26] S. Hocine, C. Rabia, M. M. Bettahar and M. Fournier, “Oxidative Dehydrogenation of Cyclohexane over Heteropolymolybdates,” Studies in Surface Science and Catalysis, Vol. 130, 2000, pp. 1895-1900. doi:10.1016/S0167-2991(00)80478-4
[27] R. Tayebee, “Simple Heteropoly Acids as Water-Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide,” Journal of the Korean Chemical Society, Vol. 52, No. 1, 2008, pp. 23-29. doi:10.5012/jkcs.2008.52.1.023
[28] T. Okuhara, “Catalytic Chemistry of Heteropoly Compounds,” Advances in Catalysis, Vol. 41, 1996, pp. 113-252. doi:10.1016/S0360-0564(08)60041-3
[29] Y. He, W. Sang, J. Wang, R. Wu and J. Min, “Vertically Well-Aligned ZnO Nanowires Generated with Self-Assembling Polymers,” Materials Chemistry and Physics, Vol. 94, No. 1, 2005, pp. 29-33.
[30] C. L. Hill and C. M. Prosser-Mccartha, “Homogeneous Catalysis by Transition Metal Oxygen Anion Clusters,” Coordination Chemistry Reviews, Vol. 143 ,1995, pp. 407-455.
[31] A. V. Churakov, E. A. Legurova, A. A. Dutov, P. V. Prikhodchenko and T. A. Tripol’skaya, “Peroxide Derivatives of Heteropoly Compounds with Keggin Anions [PW12O40]3 and [SiW12O40]4: Synthesis and Structure,” Russian Journal of Inorganic Chemistry, Vol. 53, No. 8, 2008, pp. 1187-1192. doi:10.1134/S0036023608080068
[32] T. J. R. Weakley and S. A. Malik, “Triheteropolyanions Containing Copper(II), Manganese(II), or Manganese (III),” Journal of Inorganic and Nuclear Chemistry, Vol. 32, No. 12, 1970, pp. 3875-3890.
[33] O. Benlounesa, “Oxidation of Methane on Heteropoly Compounds,” Ph.D. Dissertation, University of Mouloud Mammeri-Tizi-Ouzou, Tizi-Ouzou, 2010.
[34] S. S. Lima, G. I. Park, I. K. Song and W. Y. Lee, “Heteropolyacid (HPA)-Polymer Composite Films as Catalytic Materials for Heterogeneous Reactions,” Journal of Molecular Catalysis A: Chemical, Vol. 182-183, 2002, pp. 175-183. doi:10.1016/S1381-1169(01)00464-2
[35] S. Hocine, “Heteropolyphosphomolybdates. Preparation, Charactarization, Catalytic Activity of Cyclohexane Oxydehydrogenation,” Ph.D. Dissertation, Houari Boume Diene University, Algiers, 2003.
[36] A. Popa, V. Sasca, M. Stefanescu, E. Kis and R. Marinkovic-Neducin, “The Influence of the Nature and Textural Properties of Different Supports on the Thermal Behavior of Keggin Type Heteropolyacids,” Journal of the Serbian Chemical Society, Vol. 71, 2006, pp. 235-249. doi:10.2298/JSC0603235P
[37] G. A. Tsigdinos and C. J. Hallada, “Molybdovanadophosphoric Acids and Their Salts Investigation of Methods of Preparation and Characterization,” Inorganic Chemistry, Vol. 7, No. 3, 1968, pp. 437-441. doi:10.1021/ic50061a009
[38] T. Okuhara, N. Mizuno and M. Misono, “Catalysis by HeteroPolycompounds—Recent Developments,” Applied Catalysis A: General, Vol. 222, No. 1-2, 2001, pp. 63-77. doi:10.1016/S0926-860X(01)00830-4
[39] R. Hubaut, B. Ouled Ben Tayeb, W. Kuang, A. Rives and M. Fournier, “Mechanical Mixtures of Me(Ni, Pd)Ce Oxides and Silica-Supported Heteropolyacids: Role and Optimal Content of Each Active Species for n-Hexane Isomerization,” Kinetics and Catalysis, Vol. 47, No. 1, 2006, pp. 20-24. doi:10.1134/S0023158406010046
[40] V. V. Brei, O. V. Melezhyk, S. V. Prudius, M. M. Levechuk and K. I. Patrylak, “Superacid WOx/ZrO2 Catalysts for Isomerization of n-Hexane and for Nitration of Benzene,” Studies in Surface Science and Catalysis, Vol. 143, 2002, pp. 387-395. doi:10.1016/S0167-2991(00)80679-5
[41] B. Demirel and E. N. Givens, “Transformation of Phosphor Molybdic Acid into an Active Catalyst with Potential Application in Coal Liquefaction,” Catalysis Today, Vol. 50, No. 1, 1999, pp. 149-158. doi:10.1016/S0920-5861(98)00472-6
[42] F. Garin and F. G. Gault, “Mechanisms of Hydrogenolysis and Isomerization of Hydrocarbons on Metals. VIII. Isomerization of Carbon-13 Labeled Pentanes on a 10% Platinum-Aluminum Oxide Catalyst,” Journal of the American Chemical Society, Vol. 97, No. 16, 1975, pp. 4466-4476. doi:10.1021/ja00849a004
[43] F. R. Ribeiro, C. Marcilly and M. Guisnet, “Hydroisomerization of n-Hexane on Platinum Zeolites,” Journal of Catalysis, Vol. 78, No. 2, 1982, pp. 267-280. doi:10.1016/0021-9517(82)90311-6
[44] S. Kotrel, H. Knozinger and B. C. Gates, “The Haag-Dessau Mechanism of Protolytic Cracking of AlKanes,” Microporous and Mesoporous Materials, Vol. 35-36, 2000, pp. 11-20. doi:10.1016/S1387-1811(99)00204-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.