Share This Article:

Nanog overexpression allows human mesenchymal stem cells to differentiate into neural cells——Nanog transdifferentiates mesenchymal stem cells

Abstract Full-Text HTML XML Download Download as PDF (Size:2335KB) PP. 1-13
DOI: 10.4236/nm.2010.11001    5,802 Downloads   13,512 Views   Citations

ABSTRACT

Although stem cell therapies have been proposed as a candidate for treating neurological diseases, the best stem cell source and their therapeutic efficacy remain uncertain. Embryonic stem cells (ESCs) can efficiently generate multiple cell types, but pose ethical and clinical challenges, while the more accessible adult stem cells have a limited develop-mental potential. Following included-expression of Nanog, an ESC gene, adult human mesenchymal stem cells (HMSCs) are able to develop into cells exhibiting neural cell-like characteristics based on morphology, cell markers, and gene expressions. After expansion, Nanog overexpressed HMSCs differentiated into cells immunopositive for betaIII-tubulin and glial fibrillary acidic protein, lineage markers for neurons and astrocytes, respectively, under the influence of con-ditional media from differentiated human neural stem cells. This result indicates that the Nanog expression increased the ability of HMSCs to become a neural cell lineage. We further demonstrated that Nanog-overexpressed HMSCs were able to survive, migrate, and undergo neural cell-like differentiation after transplantation in vivo. This data offers an exciting prospect that peripheral adult stem cells can be modified and used to treat neurological diseases.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Alvarez, M. Hossain, E. Dantuma, S. Merchant and K. Sugaya, "Nanog overexpression allows human mesenchymal stem cells to differentiate into neural cells——Nanog transdifferentiates mesenchymal stem cells," Neuroscience and Medicine, Vol. 1 No. 1, 2010, pp. 1-13. doi: 10.4236/nm.2010.11001.

References

[1] D. C. Hess and C. V. Borlongan, “Stem Cells and Neurological Diseases,” Cell Proliferation, Vol. 41, Suppl. 1, 2008, pp. 94-114.
[2] E. Juengst and M. Fossel, “The Ethics of Embryonic Stem Cells-Now and Forever, Cells Without End,” The Journal Of the American Medical Association, Vol. 284, No. 24, 2000, pp. 3180-3184.
[3] A. McLaren, “Important Differences between Sources of Embryonic Stem Cells,” Nature, Vol. 408, 2000, pp. 513.
[4] A. McLaren, “Ethical and Social Considerations of Stem Cell Research,” Nature, Vol. 414, No. 8859, 2001, pp. 129-131.
[5] R. A. Barker and H. Widner, “Immune Problems in Central Nervous System Cell Therapy,” NeuroRx, Vol. 1, No.4, 2004, pp. 472-481.
[6] J. A. Bradley, E. M. Bolton and R. A. Pedersen, “Stem cell Medicine Encounters The Immune System,” Nature Reviews Immunology, Vol. 2, No. 11, 2002, pp. 859-871.
[7] S. Arnhold, H. Klein, I. Semkova, K. Addicks and U. Schraermeyer, “Neurally Selected Embryonic Stem Cells Induce Tumor Formation after Long-Term Survival Following Engraftment into the Subretinal Space,” Investigative Ophthalmology & Visual Science, Vol. 45, No. 12, 2004, pp. 4251-4255.
[8] E. Bieberich, J. Silva, G. Wang, K. Krishnamurthy and B. G. Condie, “Selective Apoptosis Of Pluripotent Mouse And Human Stem Cells By Novel Ceramide Analogues Prevents Teratoma Formation and Enriches For Neural Precursors in Es Cell-Derived Neural Transplants,” The Journal of Cell Biology, Vol. 167, No. 4, 2004, pp. 723-734.
[9] D. Rubio, J. Garcia-Castro, M. C. Martin, R. de la Fuente, J. C. Cigudosa, A. C. Lloyd and A. Bernad, “Spontaneous Human Adult Stem Cell Transformation,” Cancer Research, Vol. 65, No. 8, 2005, pp. 3035-3039.
[10] Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W. C. Low, D. A. Largaespada and C. M. Verfaillie, “Pluripotency of Mesenchymal Stem Cells Derived from Adult Marrow,” Nature, Vol. 418, No. 6893, 2000, pp. 41-49.
[11] Y. Jiang, B. Vaessen, T. Lenvik, M. Blackstad, M. Reyes and C. M. Verfaillie, “Multipotent Progenitor Cells Can be Isolated From Postnatal Murine Bone Marrow, Muscle, and Brain,” Experimental Hematology, Vol. 30, No. 8, 2002, pp. 896-904.
[12] M. Alvarez-Dolado, R. Pardal, J. M. Garcia-Verdugo, J. R. Fike, H. O. Lee, K. Pfeffer, C. Lois, S. J. Morrison and A. Alvarez-Buylla, “Fusion of Bone-Marrow-Derived Cells with Purkinje Neurons, Cardiomyocytes and Hepatocytes,” Nature, Vol. 425, 2003, pp. 968-973.
[13] N. Terada, T. Hamazaki, M. Oka, M. Hoki, D. M. Mastalerz, Y. Nakano, E. M. Meyer, L. Morel, B. E. Petersen and E. W. Scott, “Bone Marrow Cells Adopt the Phenotype of Other Cells by Spontaneous Cell Fusion,” Nature, Vol. 416, No. 6880, 2002, pp. 542-545.
[14] T. Y. Qu, X. J. Dong, I. Sugaya, A. Vaghani, J. Pulido and K. Sugaya, “Bromodeoxyuridine Increases Multipotency of Human Bone Marrow-Derived Stem Cells,” Restor Neurol Neurosci, Vol. 22, No. 6, 2004, pp. 459-468.
[15] J. T. Do and H. R. Scholer, “Cell-Cell Fusion as a Means to Establish Pluripotency,” Ernst Schering Research Foundation workshop, Vol. 60, 2006, pp. 35-45.
[16] M. Tada and T. Tada, “Nuclear Reprogramming Of Somatic Nucleus Hybridized with Embryonic Stem Cells by Electrofusion,” Methods in Molecular Biology, Vol. 329, 2006, pp. 411-420.
[17] M. Tada, Y. Takahama, K. Abe, N. Nakatsuji and T. Tada, “Nuclear Reprogramming of Somatic Cells by in Vitro Hybridization With Es Cells,” Current Biology, Vol. 11, No. 19, 2001, pp. 1553-1558.
[18] J. T. Do and H. R. Scholer, “Comparison of neurosphere Cells with Cumulus Cells after Fusion with Embryonic Stem Cells: Reprogramming Potential,” Reproduction, Fertility and Development, Vol. 17, No. 1-2, 2005, pp. 143-149.
[19] I. Chambers, D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie and A. Smith, “Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells,” Cell, Vol. 113, No. 5, 2003, pp. 643-655.
[20] K. Mitsui, Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda and S. Yamanaka, “The Homeoprotein Nanog is Required for Maintenance of Pluripotency in Mouse Epiblast and Es Cells,” Cell, Vol. 113, No. 5, 2003, pp. 631-642.
[21] Y. Fan, M. F. Melhem and J. R. Chaillet, “Forced Expression of the Homeobox-Containing Gene Pem Blocks Differentiation of Embryonic Stem Cells,” Developmental Biology, Vol. 210, No.2, 1999, pp. 481-496.
[22] R. Eiges, M. Schuldiner, M. Drukker, O. Yanuka, J. Itskovitz-Eldor and N. Benvenisty, “Establishment of Human Embryonic Stem Cell-Transfected Clones Carrying a Marker for Undifferentiated Cells,” Current Biology, Vol. 11, 2001, pp. 514-518.
[23] H. Niwa, J. Miyazaki and A. G. Smith, "Quantitative Expression of Oct-3/4 Defines Differentiation, Dedifferentiation or Self-Renewal of Es Cells," Nature Genetics, Vol. 24, No. 4, 2000, pp. 372-376.
[24] N. al Yacoub, M. Romanowska, N. Haritonova and J. Foerster, “Optimized Production and Concentration of Lentiviral Vectors Containing Large Inserts,” The Journal of Gene Medicine, Vol. 9, 2007, pp. 579-584.
[25] B. Mitta, M. Rimann and M. Fussenegger, “Detailed Design and Comparative Analysis of Protocols for Optimized Production of High-Performance Hiv-1-Derived Lentiviral Particles,” Metabolic Engineering, Vol. 7, No. 5-6, 2005, pp. 426-436.
[26] Y. Le, S. Gagneten, D. Tombaccini, B. Bethke and B. Sauer, “Nuclear Targeting Determinants of the Phage P1 Cre DNA Recombinase,” Nucleic Acids Research, Vol. 27, No. 24, 1999, pp. 4703-4709.
[27] Y. Le, J. L. Miller and B. Sauer, “Gfpcre Fusion Vectors with Enhanced Expression,” Analytical Biochemistry, Vol. 270, 1999, pp. 334-336.
[28] K. J. Livak and T. D. Schmittgen, “Analysis of Relative Gene Expression Data Using Real-Time Quantitative Pcr and the 2(-delta delta c (t)) Method,” Methods, Vol. 25, 2001, pp. 402-408.
[29] J. S. Yuan, A. Reed, F. Chen and C. N. Stewart, Jr., “Statistical Analysis of Real-Time Pcr Data,” BMC Bioinformatics, Vol. 7, No. 85, 2006, pp. 1471-2105.
[30] H. A. Booth and P. W. Holland, “Eleven Daughters of Nanog,” Genomics, Vol. 84, No. 2, 2004, pp. 229-238.
[31] A. H. Hart, L. Hartley, M. Ibrahim and L. Robb, “Identification, Cloning and Expression Analysis of the Pluripotency Promoting Nanog Genes in Mouse and Human,” Developmental dynamics, Vol. 230, 2004, pp. 187-198.
[32] D. Pain, G. W. Chirn, C. Strassel and D. M. Kemp, “Multiple Retropseudogenes from Pluripotent Cell-Specific Gene Expression Indicates a Potential Signature for Novel Gene Identification,” Journal of Biological Chemistry, Vol. 280, No. 2, 2005, pp. 6265-6268.
[33] J. L. Chew, Y. H. Loh, W. Zhang, X. Chen, W. L. Tam, L. S. Yeap, P. Li, Y. S. Ang, B. Lim, P. Robson and H. H. Ng, “Reciprocal Transcriptional Regulation of Pou5f1 and Sox2 Via the Oct4/Sox2 Complex in Embryonic Stem Cells,” Molecular and Cellular Biology, Vol. 25, No. 14, 2005, pp. 6031-6046.
[34] T. Kuroda, M. Tada, H. Kubota, H. Kimura, S. Y. Hatano, H. Suemori, N. Nakatsuji and T. Tada, “Octamer and sox Elements are Required for Transcriptional Cis Regulation of Nanog Gene Expression,” Moecular and Celluar Biology, Vol. 25, No. 6, 2005, pp. 2475-2485.
[35] D. J. Rodda, J. L. Chew, L. H. Lim, Y. H. Loh, B. Wang, H. H. Ng and P. Robson, “Transcriptional Regulation of Nanog by Oct4 and Sox2,”Journal of Biological Chemistry, Vol. 280, No. 26, 2005, pp. 24731-24737.
[36] P. Deb-Rinker, D. Ly, A. Jezierski, M. Sikorska and P. R. Walker, “Sequential DNA Methylation of the Nanog and Oct-4 Upstream Regions in Human Nt2 Cells during Neuronal Differentiation,” Journal of Biological Chemistry, Vol. 280, No. 8, 2005, pp. 6257-6260.
[37] P. Perry, S. Sauer, N. Billon, W. D. Richardson, M. Spivakov, G. Warnes, F. J. Livesey, M. Merkenschlager, A. G. Fisher and V. Azuara, “A Dynamic Switch in the Replication Timing of Key Regulator Genes in Embryonic Stem Cells Upon Neural Induction,” Cell Cycle, Vol. 3, No. 12, 2004, pp. 1645-1650.
[38] G. J. Pan, D. Q. Pei, “Identification of Two Distinct Transactivation Domains in the Pluripotency Sustaining Factor Nanog,” Cell Research, Vol. 13, No.6, 2003, pp. 499-502.
[39] A. Suzuki, A. Raya, Y. Kawakami, M. Morita, T. Matsui, K. Nakashima, F. H. Gage, C. Rodriguez-Esteban and J. C. Izpisua Belmonte, “Nanog Binds to Smad1 and Blocks Bone Morphogenetic Protein-Induced Differentiation of Embryonic Stem Cells,” Proceedings of the National Academy of Sciences, Vol. 103, No. 27, 2006, pp. 10294 -10299.
[40] G. Pan and D. Pei, “The Stem Cell Pluripotency Factor Nanog Activates Transcription with Two Unusually Potent Subdomains at Its C Terminus,” Journal of Biological Chemistry, Vol. 280, No. 2, 2005, pp. 1401-1407.
[41] M. Eberhardt, P. Salmon, M. A. von Mach, J. G. Hengstler, M. Brulport, P. Linscheid, D. Seboek, J. Oberholzer, A. Barbero, I. Martin, B. Muller, D. Trono and H. Zulewski, “Multipotential Nestin and Isl-1 Positive Mesenchymal Stem Cells Isolated from Human Pancreatic Islets,” Biochemical Biophysical Research Communications, Vol. 345, No. 3, 2006, pp. 1167-1176.
[42] P. Salmon, J. Oberholzer, T. Occhiodoro, P. Morel, J. Lou and D. Trono, “Reversible Immortalization of Human Primary Cells by Lentivector-Mediated Transfer of Specific Genes,” Molecular Theraby, Vol. 2, No. 4, 2000, pp. 404- 414.
[43] M. Reyes and C. M. Verfaillie, “Characterization of Multipotent Adult Progenitor Cells, A Subpopulation of Mesenchymal Stem Cells,” Annals of the New York Academy of Sciences, Vol. 938, 2001, pp. 231-233, discussion 233- 235.
[44] F. Ulloa-Montoya, B. L. Kidder, K. A. Pauwelyn, L. G. Chase, A. Luttun, A. Crabbe, M. Geraerts, A. A. Sharov, Y. Piao, M. S. Ko, W. S. Hu and C. M. Verfaillie, “Comparative Transcriptome Analysis of Embryonic and Adult Stem Cells With Extended and Limited Differentiation Capacity,” Genome Biology, Vol. 8, No. 8, 2007, pp. R163.
[45] Y. H. Loh, Q. Wu, J. L. Chew, V. B. Vega, W. Zhang, X. Chen, G. Bourque, J. George, B. Leong, J. Liu, K. Y. Wong, K. W. Sung, C. W. Lee, X. D. Zhao, K. P. Chiu, L. Lipovich, V. A. Kuznetsov, P. Robson, L. W. Stanton, C. L. Wei, Y. Ruan, B. Lim and H. H. Ng, “The Oct4 and Nanog Transcription Network Regulates Pluripotency in Mouse Embryonic Stem Cells,” Nature Genetics, Vol. 38, No. 4, 2006, pp. 431-440.
[46] G. Pan, J. Li, Y. Zhou, H. Zheng and D. Pei, “A Negative Feedback Loop of Transcription Factors That Controls Stem Cell Pluripotency and Self-Renewal,” The Federation of American Societies for Experimental Biology, Vol. 20, No. 10, 2006, pp. 1730-1732.
[47] M. E. Bernardo, N. Zaffaroni, F. Novara, A. M. Cometa, M. A. Avanzini, A. Moretta, D. Montagna, R. Maccario, R. Villa, M. G. Daidone, O. Zuffardi and F. Locatelli, “Human Bone Marrow Derived Mesenchymal Stem Cells Do Not Undergo Transformation After Long-Term in Vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms,” Cancer Research, Vol. 67, No. 19, 2007, pp. 9142-9149.
[48] S. Zimmermann, M. Voss, S. Kaiser, U. Kapp, C. F. Waller and U. M. Martens, "Lack of Telomerase Activity in Human Mesenchymal Stem Cells,” Leukemia, Vol. 17, No. 6, 2003, pp. 1146-1149.
[49] U. Riekstina, I. Cakstina, V. Parfejevs, M. Hoogduijn, G. Jankovskis, I. Muiznieks, R. Muceniece and J. Ancans, “Embryonic Stem Cell Marker Expression Pattern in Human Mesenchymal Stem Cells Derived From Bone Marrow, Adipose Tissue, Heart and Dermis,” Stem Cell Review, Vol.5, No. 4, 2009, pp. 378-386.
[50] L. M. Eisenberg and C. A. Eisenberg, “Stem Cell Plasticity, Cell Fusion, and Transdifferentiation,” Birth Defects Research C Embryo Today, Vol. 69, No. 3, 2003, pp. 209- 218.
[51] A. Meissner, M. Wernig and R. Jaenisch, “Direct Reprogramming of Genetically Unmodified Fibroblasts into Pluripotent Stem Cells,” Nature Biotechnology, Vol. 25, No. 10, 2007, pp. 1177-1181.
[52] K. Okita, T. Ichisaka and S. Yamanaka, “Generation of Germline-Competent Induced Pluripotent Stem Cells,” Nature, Vol. 448, No. 7151, 2007, pp. 313-317.
[53] K. Takahashi and S. Yamanaka, “Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell, Vol. 126, No. 4, 2006, pp. 663-676.
[54] S. Yamanaka, “Induction of Pluripotent Stem Cells from Mouse Fibroblasts by Four Transcription Factors,” Cell Proliferation, Vol. 41, Suppl. 1, 2008, pp. 51-56.
[55] W. E. Lowry, L. Richter, R. Yachechko, A. D. Pyle, J. Tchieu, R. Sridharan, A. T. Clark and K. Plath, “Generation of Human Induced Pluripotent Stem Cells from Dermal Fibroblasts,” Proceedings of the National Academy of Sciences, Vol.105, No. 8, 2008, pp. 2883-2888.
[56] I. H. Park, R. Zhao, J. A. West, A. Yabuuchi, H. Huo, T. A. Ince, P. H. Lerou, M. W. Lensch and G. Q. Daley, “Reprogramming of Human Somatic Cells to Pluripotency with Defined Factors,” Nature, Vol. 451, No. 7175, 2008, pp. 141-146.
[57] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda and S. Yamanaka, “Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,” Cell, Vol. 131, No. 5, 2007, pp. 861-872.
[58] J. Yu, M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin and J. A. Thomson, “Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells,” Science, Vol. 318, No. 5858, 2007, pp. 1917-1920.
[59] M. J. Go, C. Takenaka and H. Ohgushi, “Forced Expression of Sox2 or Nanog in Human Bone Marrow Derived Mesenchymal Stem Cells Maintains Their Expansion and Differentiation Capabilities,” Experimental Cell Research, Vol. 314, No.5, 2008, pp. 1147-1154.
[60] V. L. Battula, P. M. Bareiss, S. Treml, S. Conrad, I. Albert, S. Hojak, H. Abele, B. Schewe, L. Just, T. Skutella and H. J. Buhring, “Human placenta and Bone Marrow Derived Msc Cultured in Serum-Free, B-Fgf-Containing Medium Express Cell Surface Frizzled-9 and Ssea-4 and Give Rise to Multilineage Differentiation,” Differentiation, Vol. 75, No. 4, 2007, pp. 279-291.
[61] I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui and D. J. Prockop, “Expansion of Human Adult Stem Cells from Bone Marrow Stroma: Conditions That Maximize the Yields of Early Progenitors and Evaluate Their Quality,” Stem Cells, Vol.20, No. 6, 2002, pp. 530-541.
[62] P. A. Sotiropoulou, S. A. Perez, M. Salagianni, C. N. Baxevanis and M. Papamichail, “Characterization of the Optimal Culture Conditions for Clinical Scale Production of Human Mesenchymal Stem Cells,” Stem Cells, Vol. 24, No. 2, 2006, pp. 462-471.
[63] M. Yokoyama, H. Miwa, S. Maeda, S. Wakitani and M. Takagi, “Influence of Fetal Calf Serum on Differentiation of Mesenchymal Stem Cells to Chondrocytes During Expansion,” Journal of Bioscience and Bioengineering, Vol. 106, No.1, 2008, pp. 46-50.
[64] D. Baksh, R. Yao and R. S. Tuan, “Comparison of Proliferative and Multilineage Differentiation Potential of Human Mesenchymal Stem Cells Derived from Umbilical Cord and Bone Marrow,” Stem Cells, Vol. 25, No. 6, 2007, pp. 1384-1392.
[65] H. Haleem-Smith, A. Derfoul, C. Okafor, R. Tuli, D. Olsen, D. J. Hall and R. S. Tuan, “Optimization of High-Efficiency transfection of Adult Human Mesenchymal Stem Cells in Vitro,” Molecular Biotechnology, Vol. 30, No. 1, 2005, pp. 9-20.
[66] A. Hamm, N. Krott, I. Breibach, R. Blindt and A. K. Bosserhoff, “Efficient Transfection Method for Primary Cells,” Tissue Engineering, Vol. 8, No. 2, 2002, pp. 235-245.
[67] J. M. McMahon, S. Conroy, M. Lyons, U. Greiser, C. O'Shea, P. Strappe, L. Howard, M. Murphy, F. Barry and T. O'Brien, “Gene Transfer into Rat Mesenchymal Stem Cells: A comparative study of viral and nonviral vectors,” Stem Cells and Devlopment, Vol. 15, No. 1, 2006, pp. 87- 96.
[68] M. M. Bonab, K. Alimoghaddam, F. Talebian, S. H. Gha-
[69] ffari, A. Ghavamzadeh and B. Nikbin, “Aging of Mesenchymal Stem Cell in Vitro,” BMC Cell Bioloty, Vol. 7, 2006, pp.7-14.
[70] F. Moussavi-Harami, Y. Duwayri, J. A. Martin and J. A. Buckwalter, “Oxygen Effects on Senescence in Chondrocytes and Mesenchymal Stem Cells: Consequences for Tissue Engineering,” Iowa Orthopaedic Journal, Vol. 24, 2004, pp. 15-20.
[71] X. Y. Zhang, V. F. La Russa and J. Reiser, “Transduction of Bone-Marrow-Derived Mesenchymal Stem Cells by Using Lentivirus Vectors Pseudotyped with Modified Rd114 Envelope Glycoproteins,” Journal Virology, Vol. 78, No. 3, 2004, pp. 1219-1229.
[72] S. J. Greco, K. Liu and P. Rameshwar, “Functional Similarities among Genes Regulated by Oct4 in Human Mesenchymal and Embryonic Stem Cells,” Stem Cells, Vol. 25, No. 12, 2007, pp. 3143-3154.
[73] S. Wislet-Gendebien, G. Hans, P. Leprince, J. M. Rigo, G. Moonen and B. Rogister, “Plasticity of Cultured Mesenchymal Stem Cells: Switch from Nestin-Positive to Excitable Neuron-Like Phenotype,” Stem Cells, Vol. 23, No. 3, 2005, pp. 392-402.
[74] R. Gonzalez, C. B. Maki, J. Pacchiarotti, S. Csontos, J. K. Pham, N. Slepko, A. Patel and F. Silva, “Pluripotent Marker Expression and Differentiation of Human Second Trimester Mesenchymal Stem Cells,” Biochemical Biophysical Research Communication, Vol. 362, No. 2, 2007, pp. 491-497.
[75] R. Izadpanah, T. Joswig, F. Tsien, J. Dufour, J. C. Kirijan and B. A. Bunnell, “Characterization of Multipotent Mesenchymal Stem Cells from the Bone Marrow of Rhesus Macaques,” Stem Cells Development, Vol. 14, No. 4, 2005, pp. 440-451.
[76] M. S. Tsai, S. M. Hwang, Y. L. Tsai, F. C. Cheng, J. L. Lee and Y. J. Chang, “Clonal Amniotic Fluid-Derived Stem Cells Express Characteristics of Both Mesenchymal and Neural Stem Cells,” Biology Reproduction, Vol. 74, No. 3, 2006, pp. 545-551.
[77] L. Liu, C. M. DiGirolamo, P. A. Navarro, M. A. Blasco and D. L. Keefe, “Telomerase Deficiency Impairs Differentiation of Mesenchymal Stem Cells,” Experimental Cell Research, Vol. 294, No. 1, 2004, pp. 1-8.
[78] D. Parsch, J. Fellenberg, T. H. Brummendorf, A. M. Eschlbeck and W. Richter, “Telomere Length and Telomerase Activity during Expansion and Differentiation of Human Mesenchymal Stem Cells and Chondrocytes,” Journal of Molecular Medicine, Vol. 82, No. 1 2004, pp. 49-55.
[79] T. Mori, T. Kiyono, H. Imabayashi, Y. Takeda, K. Tsuchiya, S. Miyoshi, H. Makino, K. Matsumoto, H. Saito, S. Ogawa, M. Sakamoto, J. Hata and A. Umezawa, “Combination of Htert and Bmi-1, E6, Or E7 Induces Prolongation of the Life Span of Bone Marrow Stromal Cells From an Elderly Donor without Affecting Their Neurogenic Potential,” Molecular and Cellular Biology, Vol. 25, No. 12, 2005, pp. 5183-5195.
[80] T. Okamoto, T. Aoyama, T. Nakayama, T. Nakamata, T. Hosaka, K. Nishijo, T. Nakamura, T. Kiyono and J. Toguchida, “Clonal Heterogeneity in Differentiation Potential of Immortalized Human Mesenchymal Stem Cells,” Biochemical Biophysical Research Communications, 295, 2002, pp. 354-361.
[81] B. M. Abdallah, M. Haack-Sorensen, J. S. Burns, B. Elsnab, F. Jakob, P. Hokland, M. Kassem, “Maintenance of Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells Immortalized by Human Telomerase Reverse Transcriptase Gene Despite [Corrected] Extensive Proliferation,” Biochemical Biophysical Research Communications, Vol. 326, 2005, pp. 527-538.
[82] E. S. Jun, T. H. Lee, H. H. Cho, S. Y. Suh and J. S. Jung, “Expression of Telomerase Extends Longevity and Enhances Differentiation in Human Adipose Tissue-Derived Stromal Cells,” Cellular Physiology Biochemistry, Vol. 14, 2004, pp. 261-268.
[83] S. K. Kang, L. Putnam, J. Dufour, J. Ylostalo, J. S. Jung and B. A. Bunnell, “Expression of Telomerase Extends the Lifespan and Enhances Osteogenic Differentiation of Adipose Tissue-Derived Stromal Cells,” Stem Cells, Vol. 22, No. 7, 2004, pp. 1356-1372.
[84] J. L. Simonsen, C. Rosada, N. Serakinci, J. Justesen, K. Stenderup, S. I. Rattan, T. G. Jensen and M. Kassem, “Telomerase Expression Extends the Proliferative Life-Span and Maintains the Osteogenic Potential of Human Bone Marrow Stromal Cells,” Nature Biotechnology, Vol. 20, No. 6, 2002, pp. 592-596.
[85] J. B. Kim, H. Zaehres, G. Wu, L. Gentile, K. Ko, V. Sebastiano, M. J. Arauzo-Bravo, D. Ruau, D. W. Han, M. Zenke, H. R. Scholer, “Pluripotent Stem Cells Induced from Adult Neural Stem Cells by Reprogramming with Two Factors,” Nature, Vol. 454, 2008, pp. 646-650.
[86] K. Sugaya, “Neuroreplacement Therapy and Stem Cell Biology under Disease Conditions,” Cell Mol Life Sci, 60 (2003) 1891-1902.
[87] K. Sugaya, A. Alvarez, A. Marutle, Y. D. Kwak and E. Choumkina, “Stem Cell Strategies for Alzheimer's Disease Therapy,” Panminerva Medica, Vol. 48, 2006, pp. 87-96.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.