Share This Article:

Algorithm of Iterative Process for Some Mappings and Iterative Solution of Some Diffusion Equation

Abstract Full-Text HTML Download Download as PDF (Size:147KB) PP. 62-65
DOI: 10.4236/ojapps.2012.24B015    1,433 Downloads   2,585 Views  

ABSTRACT

In Hilbert spaces , through improving some corresponding conditions in some literature and extending some recent relevent results, a strong convergence theorem of some implicit iteration process for pesudocon-traction mappings and explicit iteration process for nonexpansive mappings were established. And by using the result, some iterative solution for some equation of response diffusion were obtained.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Liu, W. and Meng, J. (2012) Algorithm of Iterative Process for Some Mappings and Iterative Solution of Some Diffusion Equation. Open Journal of Applied Sciences, 2, 62-65. doi: 10.4236/ojapps.2012.24B015.

References

[1] Deimling K. zeros of accretive operators [J].Manuscripta Math, 1974,13(4):365-374.
[2] Chang S S. Cho Y J. Zhou H Y. Iterutive methods for nonlinear operator Equation in Banach space [M].New York: Science publishers, 2002.
[3] Zhou H Y. Convergence theorems of common fixed points for a finite family of Lipschitzian pseudocontractions inBanachspaces [J].Nonlinear Anal ,2008,68(10):2977-2983
[4] Xu H K. Inequalities in Banach space with applications, Nonlinear Anal TMA ,1991,16(2):1127-1138.
[5] Xu H K. Iterative algorithms for nonlinear operator [J]. J London Math Soc,2002,66:240-256.
[6] Moudafi A. Viscosity approximation methods for fixed-points problems [J]. J Math Anal Appl.2000,241:46-55.
[7] Xu H K. Viscosity approximation methods for nonexpa nsive mapping [J]. J Math Anal Appl,2004,298:279-291.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.