Share This Article:

Mechanical and Dielectric Properties of InTe Crystals

Abstract Full-Text HTML Download Download as PDF (Size:255KB) PP. 79-83
DOI: 10.4236/csta.2012.13015    3,272 Downloads   6,492 Views   Citations

ABSTRACT

The mechanical properties of indium telluride (InTe) crystals grown by the Bridgman technique were investigated at room temperature using a Vickers hardness tester. The microhardness is observed to vary nonlinearly with the applied load, 10 - 100 g. The cleaved ingots are found to have high value of microhardness (222.44 kg/mm2 at a load of25 g), which reflects an appreciable degree of strength due to their covalent bonding and homogeneity. The studies revealed that the dislocations in the grown crystals offered a resistance to fresh dislocations due to interaction. At higher loads, plastic deformation induces by slip, exhibiting a decrease in hardness from the peak value. The dielectric constant and dielectric loss of indium telluride crystals were evaluated in the frequency range, 1 kHz - 1 MHz for different temperatures (35oC - 140oC). The frequency dependence of AC conductivity was analyzed as a function of temperature. The effect of temperature and frequency on the dielectric response of InTe crystals has been assessed on their cleavage faces and the obtained results are discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Mathew, A. Kunjomana, K. Munirathnam, K. Chandrasekharan, M. Meena and C. Mahadevan, "Mechanical and Dielectric Properties of InTe Crystals," Crystal Structure Theory and Applications, Vol. 1 No. 3, 2012, pp. 79-83. doi: 10.4236/csta.2012.13015.

References

[1] O. A. Balitskii, V. P. Savchyn, P. V. Savchyn and Y. M. Fiyala, “Phase Formation in Surface Layers of GaTe and InTe Single Crystals during Thermal Oxidation in Air,” Functional Materials, Vol. 12, No. 2, 2005, pp. 206-211.
[2] M. M. Nassary, S. A. Hussein, A. E. Belal and H. A. El-Shalkh, “Investigation of the Switching Phenomena in Indium Monotelluride Single Crystals,” Physica Status Solidi (a), Vol. 145, No. 1, 1994, pp. 151-155. doi:10.1002/pssa.2211450114
[3] A. G. Kunjomana and K. A. Chandrasekharan, “Microhardness Studies of GaTe Whiskers,” Crystal Research and Technology, Vol. 40, No. 8, 2005, pp. 782-785. doi:10.1002/crat.200410431
[4] G. R. Pandya, S. R. Bhavsar and P. H. Sony, “Effects of Anisotropy and Annealing on Microhardness of InxBi2-xTe3 (x = 0.1 to 0.5) Single Crystals,” Bulletin of Materials Science, Vol. 22, No. 1, 1999, pp. 15-16. doi:10.1007/BF02745669
[5] Y. S. Boyarskaya, D. Z. Grabko, M. I. Medinskaya and N. A. Palistrant, “Mechanical Properties of Pure and Doped InP Single Crystals Determined under Local Loading,” Semiconductors, Vol. 31, No. 2, 1997, pp. 139-142. doi:10.1134/1.1187095
[6] D. Arivuoli, F. D. Gnanam and P. Ramasamy, “Growth and Microhardness Studies of Chalcogenides of Arsenic, Antimony and Bismuth,” Journal of Materials Science Letters, Vol. 7, No. 7, 1988, pp. 711-713. doi:10.1007/BF00722076
[7] T. Chattopadhyay, R. P. Santandrea and H. G. Von Schnering, “Temperature and Pressure Dependence of the Crystal Structure of InTe: A New High Pressure Phase of InTe,” Journal of Physics and Chemistry of Solids, Vol. 46, No. 3, 1985, pp. 351-356. doi:10.1016/0022-3697(85)90178-7
[8] G. K. Solanki, K. D. Patel, N. N. Gosai and B. P. Rahul, “Growth and Dielectric Properties of SnSe0.5Te0.5 Crystals,” Research Journal of Chemical Sciences, Vol. 2, No. 10, 2012, pp. 43-48.
[9] A. M. Farid, H. E. Atyia and N. A. Hegab, “AC Conductivity and Dielectric Properties of Sb2Te3 Thin Films,” Vacuum, Vol. 80, No. 4, 2005, pp. 284-294. doi:10.1016/j.vacuum.2005.05.003
[10] N. A. Hegab, M. A. Afifi, H. E. Atyia and M. I. Ismael, “AC Conductivity and Dielectric Properties of Amorphous Ge15Se60X25 (X = As or Sn) Films,” Acta Physica Polonica A, Vol. 119, No. 3, 2001, pp. 416-423.
[11] D. N. Bose and S. De Purkayastha, “Dielectric and Photo-conducting Properties of Ga2Te3 and In2Te3 Crystals,” Materials Research Bulletin, Vol. 16, No. 6, 1981, pp. 635-642. doi:10.1016/0025-5408(81)90262-2
[12] S. Pal, D. N. Bose, S. Asokan and E. S. R. Gopal, “Anisotropic Properties of the Layered Semiconductor InTe,” Sold State Communications, Vol. 80, No. 9, 1991, pp. 753-756. doi:10.1016/0038-1098(91)90902-8
[13] A. T. Nagat, G. A. Gamal and A. E. Belal, “Experimental Studies on the Thermoelectric Properties of InTe Single Crystals,” Crystal Research and Technology, Vol. 25, No. 4, 1990, pp. 72-77. doi:10.1002/crat.2170250425
[14] V. M. Glazo and V. N. Vigdorovich, “Microhardness of Metals and Semiconductors,” Consultants Bureau, New York, 1971.
[15] M. Meena and C. K. Mahadevan, “Effect of Added Impurities on the Electrical Properties of L-Arginine Acetate Single Crystals, Archives of Applied Science Research, Vol. 2, No. 6, 2010, pp. 185-199.
[16] M. A. M. Seyam, “Dielectric Relaxation in Polycrystal-line Thin Films of In2Te3,” Applied Surface Science, Vol. 181, 2001, pp. 128-138. doi:10.1016/S0169-4332(01)00378-6

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.