Share This Article:

In Silico Experiments of Carbon Dioxide Atmosphere and Buffer Type Effects on the Biomimetic Coating with Simulated Body Fluids

Abstract Full-Text HTML Download Download as PDF (Size:352KB) PP. 239-248
DOI: 10.4236/ampc.2012.24036    3,393 Downloads   5,012 Views   Citations

ABSTRACT

The formation of calcium phosphate phases is extremely important in a biomedical engineering context. These phosphates are used in many applications, such as grafts, drug-delivery processes and evaluation of the bioactivity of metallic surfaces. Considering this scenario, it is useful to evaluate the thermodynamic conditions for the precipitation of phosphates of biomedical interest, mainly hydroxyapatite. In this work, we investigate the effects of two important factors using a thermodynamic framework: 1) carbon dioxide partial pressure; and 2) buffer type (2-Amino-2-hydroxy- methyl-propane-1,3-diol, known as TRIS and 2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid, also called HEPES), on the driving force behind the precipitation of calcium phosphates in simulated body fluids. The in silico results show that the pH value is governed by carbon dioxide content, as expected to occur in vivo. Moreover, the buffers can deplete the free calcium available in solution and, consequently, can cause difficulties in the calcium phosphate precipitation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Platt, I. Bastos, M. Andrade and G. Soares, "In Silico Experiments of Carbon Dioxide Atmosphere and Buffer Type Effects on the Biomimetic Coating with Simulated Body Fluids," Advances in Materials Physics and Chemistry, Vol. 2 No. 4, 2012, pp. 239-248. doi: 10.4236/ampc.2012.24036.

References

[1] I. N. Bastos, G. M. Platt, M. C. Andrade and G. D. A. Soares, “Theoretical Study of Tris and Bistris Effects on Simulated Body Fluids,” Journal of Molecular Liquids, Vol. 139, No. 1-3, 2008, pp. 121-130. doi:10.1016/j.molliq.2007.12.003
[2] R. Nakon and C. R. Krishnamoorthy, “Free-Metal Ion Depletion by ‘Good’s’ Buffers,” Science, Vol. 221, No. 4612, 1983, pp. 749-750. doi:10.1126/science.6879173
[3] I. V. Glinkina, V. A. Durov and G. A. Mel’nitchenko, “Modelling of Electrolyte Mixtures with Application to Chemical Equilibria in Mixtures—Prototypes of Blood’s Plasma and Calcification of Soft Tissues,” Journal of Molecular Liquids, Vol. 110, No. 1-3, 2004, pp. 63-67. doi:10.1016/j.molliq.2003.09.001
[4] C. X. Resende, J. Dille, G. M. Platt, I. N. Bastos, G. A. Soares, “Characterization of Coating Produced on Titanium Surface by a Designed Solution Containing Calcium and Phosphate Ions,” Materials Chemistry & Physics, Vol. 109, No. 2-3, 2008, pp. 429-435. doi:10.1016/j.matchemphys.2007.12.011
[5] G. M. Platt, I. N. Bastos, M. C. Andrade and G. D. A. Soares, “Study of Buffer Effect on the Driving Force for the Precipitation of Calcium Phosphates with Biomedical Interest,” Proceedings of 6th Latin American Congress of Artificial Organs and Biomaterials, Gramado, 17-20 August 2010.
[6] G. M. Platt, I. N. Bastos, M. C. Andrade and G. D. A. Soares, “Phosphate Formation of Biomedical Interest in Carbon Dioxide Enriched Atmospheres,” Proceedings of 6th Latin American Congress of Artificial Organs and Biomaterials, Gramado, 17-20 August 2010.
[7] G. A. Zhang and Y. F. Cheng, “On the Fundamentals of Electrochemical Corrosion of X65 Steel in CO2-Containing Formation Water in the Presence of Acetic Acid in Petroleum Production,” Corrosion Science, Vol. 51, No. 1, 2009, pp. 87-94. doi:10.1016/j.corsci.2008.10.013
[8] C. T. Kelley, “Solving Nonlinear Equations with Newton’s Method,” SIAM, Phila-delphia, 2003. doi:10.1137/1.9780898718898
[9] H. Sigel, K. H. Scheller and B. Prijs, “Metal-Ion/Buffer Interactions. Stability of Alkali and Alkaline Earth Ion Complexes with Triethanolamine (TEA), 2-Amino-2(hydroxymethyl)-1,3-propanediol (TRIS) and 2-[Bis(2-hydroxyethyl)-amino]2(hydroxymethyl)-1,3-propanediol (BISTRIS) in Aqueous and Mixed Solvents,” Inorganica Chimica Acta, Vol. 66, 1982, pp. 147-155. doi:10.1016/S0020-1693(00)85805-3
[10] A. Chugtai, R. Marshall and G. H. Nancollas, “Complexes in Calcium Phosphate Solutions,” Journal of Physical Chemistry, Vol. 72, No. 1, 1968, pp. 208-211. doi:10.1021/j100847a039
[11] T. E. Larson, F. W. Sollo Jr. and F. F. McGurk, “Complexes Affecting the Solubility of Calcium Carbonate in Water,” Research Report No. 68, University of Illinois at Urbana-Champaign, Urbana and Champaign, 1973.
[12] M. S. Tung, N. Eidelman, B. Sieck and W. E. Brown, “Octacalcium Phosphate Solubility Product from 4?C to 37?C,” Journal of Research of the National Bureau of Standards, Vol. 93, No. 5, 1988, pp. 613-624. doi:10.6028/jres.093.153
[13] P. W. Linder and J. C. Little, “Formation Constants for the Complexes of Orthophosphate with Magnesium and Hydrogen Ions,” Talanta, Vol. 32, No. 1, 1985, pp. 83-85. doi:10.1016/0039-9140(85)80027-8
[14] J. F. Masson, S. Gauda, B. Mizaikoff and C. Kranz, “The Interference of HEPES Buffer during Amperometric Detection of ATP in Clinical Applications,” Analytical Bioanalytical Chemistry, Vol. 390, No. 8, 2008, pp. 2067- 2071. doi:10.1007/s00216-008-2015-y
[15] M. Sokolowska and W. Bal, “Cu(II) Complexation by ‘Non-Coordinating’ N-2-hydroxyethylpiperazine-N-2-etha- nesulfonic Acid (HEPES Buffer),” Journal of Inorganic Biochemistry, Vol. 99, No. 8, 2005, pp. 1653-1660. doi:10.1016/j.jinorgbio.2005.05.007
[16] M. T. S. D.Vasconcelos, M. A. G. O. Azenha and O. M. Lage, “Elec-trochemical Evidence of Surfactant Activity of the HEPES pH Buffer Which May Have Implications on Trace Metal Availa-bility to Cultures in Vitro,” Analytical Biochemistry, Vol. 241, No. 2, 1996, pp. 248-253. doi:10.1006/abio.1996.0406
[17] K. Hegetschweiler and P. Saltman, “Interaction of Copper(II) with N-(2-hydroxyethyl)piperazine-N’-ethanesulfonic acid (HEPES),” Inorganic Chemistry, Vol. 25, No. 1, 1986, pp. 107-109. doi:10.1021/ic00221a028
[18] P. S. Vanzillotta, M. Sader, I. N. Bastos and G. A. Soares, “Improvement of in Vitro Titanium Bioactivity by Three Different Surface Treatments,” Dental Materials, Vol. 22, No. 3, 2006, pp. 275-282. doi:10.1016/j.dental.2005.03.012
[19] S. V. Dorozhkin, “Biocomposites and Hybrid Biomaterials Based on Calcium Orthophosphates,” Biomatter, Vol. 1, No. 1, 2011, pp. 3-56. doi:10.4161/biom.1.1.16782

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.