Share This Article:

Fully On-Chip Integrated Photodetector Front-End Dedicated to Real-Time Portable Optical Brain Imaging

Abstract Full-Text HTML Download Download as PDF (Size:1539KB) PP. 300-313
DOI: 10.4236/opj.2012.24037    5,363 Downloads   11,870 Views   Citations

ABSTRACT

Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a portable and noninvasive tool for monitoring of blood oxygenation. In this paper we have introduced a new miniaturized photodetector front-end on achip to be applied in a portable fNIRS system. It includes silicon avalanche photodiodes (SiAPD), Transimpedance amplifier (TIA) front-end and Quench-Reset circuitry to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting. Proposed SiAPD exhibits high-avalanche gain (>100), low-breakdown voltage (<12 V) and high photon detection efficiency accompanying with low dark count rates. The proposed TIA front-end offer a low power consumption (<1 mW), high-transimpedance gain (up to 250 MV/A), tunable bandwidth (1 kHz - 1 GHz) and very low input and output noise (~few fA/√Hz and few μV/√Hz). The Geiger-mode photon counting front-end also exhibits a controllable hold-off and rest time with an ultra fast quench-reset time (few ns). This integrated system has been implemented using submicron (0.35 μm) standard CMOS technology.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Kamrani, F. Lesage and M. Sawan, "Fully On-Chip Integrated Photodetector Front-End Dedicated to Real-Time Portable Optical Brain Imaging," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 300-313. doi: 10.4236/opj.2012.24037.

References

[1] J. G. Webster, “Medical Instrumentation, Application and Design,” John Wiley & Sons Inc., Hoboken, 2010.
[2] R. F. Yazicioglu, C. Van Hoof and R. Puers, “Biopotential Readout Circuits for Portable Acquisition Systems,” Springer, Berlin, 2009. doi:10.1007/978-1-4020-9093-6
[3] V. Peluso, P. Vancorenland, M. Steyaert and W. Sansen, “900 mV Differential Class AB OTA for Switched Opamp Applications,” Electronics Letters, Vol. 33, No. 17, 1997, pp. 1455-1456. doi:10.1049/el:19970964
[4] H. F. Achiguia, M. Sawana and C. J. B. Fayomi, “A Monolithic Based NIRS Front-End Wireless Sensor,” Microelectronics Journal, 39, 10, 2008, pp. 1209-1217. doi:10.1016/j.mejo.2008.01.055
[5] K. Phang, “CMOS Optical Preamplifier Design Using Graphical Circuit Analysis,” PhD Thesis, Department of Electrical and Computer Engineering, University of Toronto, Toronto, 2001.
[6] B. Wilson and J. D. Drew, “Novel Transimpedance Amplifier Formulation Exhibiting Gain-Bandwidth Independence,” IEEE International Symposium on Circuits and Systems, Vol. 1, 1997, pp. 169-172. doi:10.1109/ISCAS.1997.608649
[7] B. Razavi, “A 622Mb/s 4.5 pA/√Hz CMOS Transimpedance Amplifier,” IEEE International Solid-State Circuits Conference, San Francisco, 7-9 February 2000, pp. 162-163. doi:10.1109/ISSCC.2000.839732
[8] M. Ingels and M. Steyaert, “A 1-Gbit/s, 0.7-μm CMOS Optical Receiver with Full Rail-to-Rail Output Swing,” IEEE Journal of Solid State Circuits, Vol. 34, No. 7, 1999, pp. 971-977. doi:10.1109/4.772412
[9] I. Song, “Multi-Gbit/s CMOS Transimpedance Amplifier with Integrated Photodetector for Optical Interconnects,” A Ph.D. Thesis Presented to The Academic Faculty, Georgia Institute of Technology, Atlanta, 2004.
[10] M. Nakamura and N. Ishihara, “1.2V, 35 mW CMOS Optical Transceiver ICs for 50 Mbit/s Burst-Mode Communication,” Electronic Letters, Vol. 35, No. 5, pp. 394-395, 4 March 1999. doi:10.1049/el:19990270
[11] Q. Yang, “Design of Front-End Amplifier for Optical Receiver in 0.5 Micrometer CMOS Technology,” MSc Thesis, University of Hawai, Hawai, 2005.
[12] F. Zappa, S. Tisa, A. Tosi and S. Cova, “Principles and Features of Single-Photon Avalanche Diode Arrays,” Sensors and Actuators A, Vol. 140, No. 1, 2007, pp. 103-112. doi:10.1016/j.sna.2007.06.021
[13] E. Kamrani, F. Lesage and M. Sawan, “Premature Edge Breakdown Prevention Techniques in APD Fabrication,” The 10th IEEE International NEWCAS Conference, Montreal, 17-20 June 2012, Montreal, pp. 345-348. doi:10.1109/NEWCAS.2012.6329027
[14] E. Kamrani and M. Sawan, “Fully Integrated CMOS Avalanche Photodiode and Distributed-Gain TIA for CW-fNIRS,” The IEEE Biomedical Circuits and Systems Conference (BioCAS2011), San Diego, 10-12 November 2011, pp. 317-320. doi:10.1109/BioCAS.2011.6107791
[15] E. Kamrani, A. Sultana and M. Sawan, “Tunable, Low-Power, High-Gain Transimpedance Amplifier for fNIRS Photoreceiver Front-End,” The 54th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Seoul, 7-10 August 2011, pp. 1-4. doi:10.1109/MWSCAS.2011.6026338
[16] M. Razeghi, “Technology of Quantum Devices,” Springer Press, London, 2010. doi:10.1007/978-1-4419-1056-1
[17] E. Kamrani, S. H. Andy Yun, F. Lesage and M. Sawan, “Near Infra-Red Light Detection Using Silicon Avalanche Photodiodes: Design Challenges in Standard CMOS Technology,” Proceedings of SPIE, MIOMD-XI: 11th International Conference on Infrared Optoelectronics: Materials and Devices, Chicago, 4-8 September 2012.
[18] B. Huang, X. Zhang and H. Chen, “1 Gb/s Zero Pole Cancellation CMOS Transimpednace Amplifier for Gigabit Ethernet Applications,” Journal of Semiconductors, Vol. 30, No. 10, 2009.
[19] S. Cova, “Active Quenching Circuit for Avalanche Photodiodes,” US Patent 4,963,727 (Italian Patent 22367A/88); Licensed for Industrial Production to Silena SpA, Milano, 1990.
[20] Y. Kim, I. Jun and K. H. Kim, “Design and Characterization of CMOS Avalanche Photodiode with Charge Sensitive Preamplifier,” IEEE Transactions on Nuclear Science, Vol. 55, No. 3, 2008, pp. 1376-1380. doi:10.1109/TNS.2008.924063
[21] E. Roncali and S. R. Cherry, “Application of Silicon Photomultipliers to Positron Emission Tomography,” Annals of Biomedical Engineering, Vol. 39, No. 4, 2011, pp. 1358-1377. doi:10.1007/s10439-011-0266-9
[22] S. Tisa, F. Zappa, A. Tosi and S. Cova, “Electronics for Single Photon Avalanche Diode Arrays,” Sensors and Actuators A, Vol. 140, No. 1, 2007, pp. 113-122. doi:10.1016/j.sna.2007.06.022
[23] S. Tisa, A. Tosi and F. Zappa, “Fully-Integrated CMOS Single Photon Counter,” Optics Express, Vol. 15, No. 6, 2007, pp. 2873-2887. doi:10.1364/OE.15.002873
[24] V. Peluso, P. Vancorenland, M. Steyaert and W. Sansen, “900 mV Differential Class AB OTA for Switched Opamp Applications,” Electronics Letters, Vol. 33, No. 17, 1997, pp. 1455-1456. doi:10.1049/el:19970964
[25] B. Wilson and J. D. Drew, “Novel Transimpedance Amplifier Formulation Exhibiting Gain-Bandwidth Independence,” IEEE Proceedings of International Symposium on Circuits Systems, Vol. 1, 1997, pp. 169-172.
[26] M. Tavakoli, L. Turicchia and R. Sarpeshkar, “An Ultra-Low-Power Pulse Oximeter Implemented with an Energy-Efficient Transimpedance Amplifier,” IEEE Transactions on Biomedical Circuits and Systems, Vol. 4, No. 1, 2010, pp. 27-38. doi:10.1109/TBCAS.2009.2033035
[27] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, Cambridge, 1998. doi:10.1017/CBO9780511817281
[28] R. Sarpeshkar, R. F. Lyon, and C. A. Mead, “A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea,” Analog Integrated Circuits and Signal Processing, Vol. 16, No. 3, 1998, pp. 245-274. doi:10.1023/A:1008218308069
[29] Q. Yang, “Design of Front-End Amplifier for Optical Receiver in 0.5 Micrometer CMOS Technology,” MSc Thesis, University of Hawai, Hawai, 2005.
[30] W.-Y. Choi, M.-J. Lee and J.-S. Youn, “Si Integrated Photoreceivers,” 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Austin, 4-6 October 2010, pp. 77-81. doi:10.1109/BIPOL.2010.5667948
[31] S. Radovanovic, A.-J. Annema and B. Nauta, “A 3Gb/s Optical Detector in Standard CMOS for 850 nm Optical Communication,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 8, 2005, pp. 1706-1717. doi:10.1109/JSSC.2005.852030
[32] W.-Z. Chen, S.-H. Huang, G.-W. Wu, C.-C. Liu, Y.-T. Huang, C.-F. Chiu, W.-H. Chang and Y.-Z. Juang, “A 3.125 Gbps CMOS Fully Integrated Optical Receiver with Adaptive Analog Equalizer,” Proceedings of IEEE Asian Solid-State Circuits Conference, Jeju, 12-14 November 2007, pp. 396-399. doi:10.1109/ASSCC.2007.4425714
[33] F. Tavernier and M. Steyaert, “Power Efficient 4. 5Gbit/s Optical Receiver in 130 nm CMOS with Integrated Photodiode,” Proceedings of European Solid-State Circuits Conference, Edinburgh, 15-19 September 2008, pp. 162-165.
[34] W.-Z. Chen and S.-H. Huang, “A 2.5 Gbps CMOS Fully Integrated Optical Receiver with Lateral PIN Detector,” Proceedings of Custom Integrated Circuits Conference, San Jose, 16-19 September 2007, pp. 293-296. doi:10.1109/CICC.2007.4405736
[35] J.-S. Youn, H.-S. Kang, M.-J. Lee, K.-Y. Park and W.-Y. Choi, “High-Speed CMOS Integrated Optical Receiver with an Avalanche Photodetector,” IEEE Photonics Technology Letters, Vol. 21, No. 20, 2009, pp. 1553-1555. doi:10.1109/LPT.2009.2029869
[36] A. Sultana, E. Kamrani and M. Sawan, “CMOS Silicon Avalanche Photodiodes for NIR Light Detection: A Survey,” Journal of Analog Integrated Circuits and Signal Processing, 2012, pp. 1-13. doi:10.1007/s10470-011-9641-6
[37] J.-S. Youn, M.-J. Lee, K.-Y. Park, H. Rücker and W.-Y. Choi, “7-Gb/s Monolithic Photoreceiver Fabricated with 0.25-μm SiGe BiCMOS Technology,” IEICE Electronics Express, Vol. 7, No. 9, 2010, pp. 659-665. doi:10.1587/elex.7.659
[38] E. Kamrani, S. H. A. Yun, F. Lesage and M. Sawan, “State-of-the-Art Logarithmic Transimpedance Amplifier with Automatic Gain Control and Ambient Light Rejection for fNIRS,” Proceedings of SPIE MIOMD-XI, Chicago, 4-8 September 2012, pp. 58-59.
[39] E. Kamrani, S. H. Andy Yun, F. Lesage and M. Sawan, “Optimal-Adaptive Control System for Low-Noise, LowPower and Fast Photodetection in Functional Near InfraRed Spectroscopy,” Proceedings of SPIE, MIOMD-XI, Chicago, 4-8 September 2012.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.