New Alleles of Rice ebisu dwarf (d2) Mutant Show both Brassinosteroid-Deficient and -Insensitive Phenotypes

Abstract

ebisu dwarf (d2) is a mutant caused by mutation in a rice brassinosteroid biosynthetic enzyme gene, CYP90D2/D2, thereby conferring a brassinosteroid-deficient dwarf phenotype. Three newly isolated d2 alleles derived from a Nippon- bare mutant library (d2-3, d2-4, and d2-6) produced more severe dwarf phenotypes than the previously characterized null allele from a Taichung 65 mutant library, d2-1. Linkage analysis and a complementation test clearly indicated that the mutant phenotypes in d2-6 were caused by defects in CYP90D2/D2, and exogenous treatment with brassinolide, a bioactive brassinosteroid, rescued the dwarf phenotype of three Nipponbare-derived d2 mutants. However, the content of endogenous bioactive brassinosteroid, castasterone, and the expression of brassinosteroid-response genes indicated that partial suppression of the brassinosteroid response in addition to a brassinosteroid deficiency has occurred in the Nipponbare-derived d2 mutants. Based on these results, we discuss the possibility that wild-type Nipponbare has some defects in an unknown factor or factors related to the brassinosteroid response in rice.

Share and Cite:

T. Sakamoto, Y. Morinaka, H. Kitano and S. Fujioka, "New Alleles of Rice ebisu dwarf (d2) Mutant Show both Brassinosteroid-Deficient and -Insensitive Phenotypes," American Journal of Plant Sciences, Vol. 3 No. 12, 2012, pp. 1699-1707. doi: 10.4236/ajps.2012.312208.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. D. Clouse and J.M. Sasse, “Brassinosteroids: Essential Regulators of Plant Growth and Development,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 49, No. 1, 1998, pp. 427-451. doi:10.1146/annurev.arplant.49.1.427
[2] J. M. Sasse, “Physiological Action of Brassinosteroids: An Update,” Journal of Plant Growth Regulation, Vol. 22, No. 4, 2003, pp. 276-288. doi:10.1007/s00344-003-0062-3
[3] P. Krishna, “Brassinosteroid-Mediated Stress Responses,” Journal of Plant Growth Regulation, Vol. 22, No. 4, 2003, pp. 289-297. doi:10.1007/s00344-003-0058-z
[4] H. Nakashita, M. Yasuda, T. Nitta, T. Asami, S. Fujioka, Y. Arai, K. Sekimata, S. Takatsuto, I. Yamaguchi and S. Yoshida, “Brassinosteroid Functions in a Broad Range of Disease Resistance in Tobacco and Rice,” Plant Journal, Vol. 33, No. 5, 2003, pp. 887-898. doi:10.1046/j.1365-313X.2003.01675.x
[5] S. Koh, S. C. Lee, M. K. Kim, J. H. Koh, S. Lee, G. An, S. Choe and S. R. Kim, “T-DNA Tagged Knockout Mutation of Rice OsGSK1, an Orthologue of Arabidopsis BIN2, with Enhanced Tolerance to Various Abiotic Stresses,” Plant Molecular Biology, Vol. 65, No. 4, 2007, pp. 453- 466. doi:10.1007/s11103-007-9213-4
[6] T. Sakamoto, Y. Morinaka, T. Ohnishi, H. Sunohara, S. Fujioka, M. Ueguchi-Tanaka, M. Mizutani, K. Sakata, S. Takatsuto, S. Yoshida, H. Tanaka, H. Kitano and M. Matsuoka, “Erect Leaves Caused by Brassinosteroid Deficiency Increase Biomass Production and Grain Yield in Rice,” Nature Biotechnology, Vol. 24, No. 1, 2006, pp. 105-109. doi:10.1038/nbt1173
[7] Y. Morinaka, T. Sakamoto, Y. Inukai, M. Agetsuma, H. Kitano, M. Ashikari and M. Matsuoka, “Morphological Alteration Caused by Brassinosteroid Insensitivity Increases the Biomass and Grain Production of Rice,” Plant Physiology, Vol. 141, No. 3, 2006, pp. 924-931. doi:10.1104/pp.106.077081
[8] C. Y. Wu, A. Trieu, P. Radhakrishnan, S. F. Kwok, S. Harris, K. Zhang, J. Wang, J. Wan, H. Zhai, S. Takatsuto, S. Matsumoto, S. Fujioka, K. A. Feldmann and R. I. Pennell, “Brassinosteroids Regulate Grain Filling in Rice,” Plant Cell, Vol. 20, No. 8, 2008, pp. 2130-2145. doi:10.1105/tpc.107.055087
[9] C. Yamamuro, Y. Ihara, X. Wu, T. Noguchi, S. Fujioka, S. Takatsuto, M. Ashikari, H. Kitano and M. Matsuoka, “Loss of Function of a Rice brassinosteroid insensitive1 Homolog Prevents Internode Elongation and Bending of the Lamina Joint,” Plant Cell, Vol. 12, No. 9, 2000, pp. 1591-1606.
[10] A. Nakamura, S. Fujioka, H. Sunohara, N. Kamiya, Z. Hong, Y. Inukai, K. Miura, S. Takatsuto, S. Yoshida, M. Ueguchi-Tanaka, Y. Hasegawa, H. Kitano and M. Matsuoka, “The Role of OsBRI1 and Its Homologous Genes, OsBRL1 and OsBRL3, in Rice,” Plant Physiology, Vol. 140, No. 2, 2006, pp. 580-590. doi:10.1104/pp.105.072330
[11] Z. Hong, M. Ueguchi-Tanaka, S. Shimizu-Sato, Y. Inukai, S. Fujioka, Y. Shimada, S. Takatsuto, M. Agetsuma, S. Yoshida, Y. Watanabe, S. Uozu, H. Kitano, M. Ashikari and M. Matsuoka, “Loss-of-Function of a Rice Brassinosteroid Biosynthetic Enzyme, C-6 Oxidase, Prevents the Organized Arrangement and Polar Elongation of Cells in the Leaves and Stem,” Plant Journal, Vol. 32, No. 4, 2002, pp. 495-508. doi:10.1046/j.1365-313X.2002.01438.x
[12] M. Mori, T. Nomura, H. Ooka, M. Ishizaka, T. Yokota, K. Sugimoto, K. Okabe, H. Kajiwara, K. Satoh, K. Yamamoto, H. Hirochika and S. Kikuchi, “Isolation and Characterization of a Rice Dwarf Mutant with a Defect in Brassinosteroid Biosynthesis,” Plant Physiology, Vol. 130, No. 3, 2002, pp. 1152-1161. doi:10.1104/pp.007179
[13] Z. Hong, M. Ueguchi-Tanaka, K. Umemura, S. Uozu, S. Fujioka, S. Takatsuto, S. Yoshida, M. Ashikari, Kitano and M. Matsuoka, “A Rice Brassinosteroid-Deficient Mutant, ebisu dwarf (d2), Is Caused by a Loss of Function of a New Member of Cytochrome P450,” Plant Cell, Vol. 15, No. 12, 2003, pp. 2900-2910. doi:10.1105/tpc.014712
[14] T. Sakamoto, T. Ohnishi, S. Fujioka, B. Watanabe and M. Mizutani, “Rice CYP90D2 and CYP90D3 Catalyze C-23 Hydroxylation of Brassinosteroids in vitro,” Plant Physiology and Biochemistry, Vol. 58, 2012, pp. 220-226. doi:10.1016/j.plaphy.2012.07.011
[15] S. Tanabe, M. Ashikari, S. Fujioka, S. Takatsuto, S. Yoshida, M. Yano, A. Yoshimura, H. Kitano, M. Matsuoka, Y. Fujisawa, H. Kato and Y. Iwasaki, “A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length,” Plant Cell, Vol. 17, No. 3, 2005, pp. 776-790. doi:10.1105/tpc.104.024950
[16] Z. Hong, M. Ueguchi-Tanaka, S. Fujioka, S. Takatsuto, S. Yoshida, Y. Hasegawa, M. Ashikari, H. Kitano and M. Matsuoka, “The Rice brassinosteroid-deficient dwarf2 Mutant, Defective in the Rice Homolog of Arabidopsis DIMINUTO/DWARF1, Is Rescued by the Endogenously Accumulated Alternative Bioactive Brassinosteroid, Dolichosterone,” Plant Cell, Vol. 17, No. 8, 2005, pp. 2243- 2254. doi:10.1105/tpc.105.030973
[17] A. Sakurai, “Brassinosteroid Biosynthesis,” Plant Physiology and Biochemistry, Vol. 37, No. 5, 1999, pp. 351- 361. doi:10.1016/S0981-9428(99)80041-2
[18] S. Fujioka, T. Noguchi, T. Watanabe, S. Takatsuto and S. Yoshida, “Biosynthesis of Brassinosteroids in Cultured Cells of Catharanthus roseus,” Phytochemistry, Vol. 53, No. 5, 2000, pp. 549-553. doi:10.1016/S0031-9422(99)00582-8
[19] T. Noguchi, S. Fujioka, S. Choe, S. Takatsuto, F. E. Tax, S. Yoshida and K. A. Feldmann, “Biosynthetic Pathways of Brassinolide in Arabidopsis,” Plant Physiology, Vol. 124, No. 1, 2000, pp. 201-210. doi:10.1104/pp.124.1.201
[20] S. Fujioka, S. Takatsuto and S. Yoshida, “An Early C-22 Oxidation Branch in the Brassinosteroid Biosynthetic Pathway,” Plant Physiology, Vol. 130, No. 2, 2002, pp. 930-939. doi:10.1104/pp.008722
[21] S. Fujita, T. Ohnishi, B. Watanabe, T. Yokota, S. Takatsuto, S. Fujioka, S. Yoshida, K. Sakata and M. Mizutani, “Arabidopsis CYP90B1 Catalyzes the Early C-22 Hydroxylation of C27, C28, and C29 Sterols,” Plant Journal, Vol. 45, No. 5, 2006, pp. 765-774. doi:10.1111/j.1365-313X.2005.02639.x
[22] H. Hirochika, K. Sugimoto, Y. Otsuki, H. Tsugawa and M. Kanda, “Retrotransposons of Rice Involved in Mutations Induced by Tissue Culture,” Proceedings of the National Academy of Sciences of the United States of America, Vo. 93, No. 15, 1996, pp. 7783-7788. doi:10.1073/pnas.93.15.7783
[23] Y. Hiei, S. Ohta, T. Komari and T. Kumashiro, “Efficient Transformation of Rice (Oryza sativa L.) Mediated by Agrobacterium and Sequence Analysis of Boundaries of the T-DNA,” Plant Journal, Vol. 6, No. 2, 1994, pp. 271- 282. doi:10.1046/j.1365-313X.1994.6020271.x
[24] N. Jiang, Z. Bao, X. Zhang, H. Hirochika, S. R. Eddy, S. R. McCouch and S. R. Wessler, “An Active DNA Transposon Family in Rice,” Nature, Vol. 421, No. 6919, 2003, pp. 163-167. doi:10.1038/nature01214
[25] K. Kikuchi, K. Terauchi, M. Wada and H. Y. Hirano, “The Plant MITE mPing Is Mobilized in Anther Culture,” Nature, Vol. 421, No. 6919, 2003, pp. 167-170. doi:10.1038/nature01218
[26] T. Nakazaki, Y. Okumoto, A. Horibata, S. Yamahira, M. Teraishi, H. Nishida, H. Inoue and T. Tanisaka, “Mobilization of a Transposon in the Rice Genome,” Nature, Vol. 421, No. 6919, 2003, pp. 170-172. doi:10.1038/nature01219
[27] Y. Ohmori, M. Abiko, A. Horibata and H. Y. Hirano, “A Transposon, Ping, Is Integrated into Intron 4 of the DROOPING LEAF Gene of Rice, Weakly Reducing Its Expression and Causing a Mild Drooping Leaf Phenotype,” Plant and Cell Physiology, Vol. 49, No. 8, 2008, pp. 1176-1184. doi:10.1093/pcp/pcn093
[28] B. K. Kim, S. Fujioka, S. Takatsuto, M. Tsujimoto and S. Choe, “Castasterone Is a Likely End Product of Brassinosteroid Biosynthetic Pathway in Rice,” Biochemical and Biophysical Research Communications, Vol. 374, No. 4, 2008, pp. 614-619. doi:10.1016/j.bbrc.2008.07.073
[29] A. Tanaka, H. Nakagawa, C. Tomita, Z. Shimatani, M. Ohtake, T. Nomura, C. J. Jiang, J. G. Dubouzet, S. Kikuchi, H. Sekimoto, T. Yokota, T. Asami, T. Kamakura and M. Mori, “BRASSINOSTEROID UPREGULATED1, Encoding a Helix-Loop-Helix Protein, Is a Novel Gene Involved in Brassinosteroid Signaling and Controls Bending of the Lamina Joint in Rice,” Plant Physiology, Vol. 151, No. 2, 2009, pp. 669-680. doi:10.1104/pp.109.140806
[30] J. Li, K. A. Lease, F. E. Tax and J. C. Walker, “BRS1, a Serine Carboxypeptidase, Regulates BRI1 Signaling in Arabidopsis thaliana,” Proceedings of the National Academy of Sciences of the United States of America, Vo. 98, No. 10, 2001, pp. 5916-5921. doi:10.1073/pnas.091065998
[31] J. Li, J. Wen, K. A. Lease, J. T. Doke, F. E. Tax and J. C. Walker, “BAK1, an Arabidopsis LRR Receptor-Like Protein Kinase, Interacts with BRI1 and Modulates Brassinosteroid Signaling,” Cell, Vol. 110, No. 2, 2002, pp. 213-222. doi:10.1016/S0092-8674(02)00812-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.