Share This Article:

Sulphurization of the Electrochemically Deposited Indium Sulphide Oxide Thin Film and Its Photovoltaic Applications

Abstract Full-Text HTML XML Download Download as PDF (Size:484KB) PP. 802-806
DOI: 10.4236/msa.2012.311116    3,018 Downloads   4,871 Views   Citations

ABSTRACT

The post-deposition heat treatment (annealing) for the electrochemically deposited thin film is often necessary in order to improve its crystallinity. In the present study, the electrochemically deposited indium sulfide oxide thin film was annealed in sulphure atmosphere for 60 min at 150℃ and 300℃. The impact of the annealing process on the composition, crystal structure, and surface morphology of the thin film was investigated. In addition, superstrate heterojunction solar cells based on the annealed film as a buffer layer and tin sulphide as an active layer were fabricated and characterized. They showed diode-like behavior under dark condition and a relatively small photovoltaic effect under AM1.5 illumination condition.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Haleem, M. Sugiyama and M. Ichimura, "Sulphurization of the Electrochemically Deposited Indium Sulphide Oxide Thin Film and Its Photovoltaic Applications," Materials Sciences and Applications, Vol. 3 No. 11, 2012, pp. 802-806. doi: 10.4236/msa.2012.311116.

References

[1] S. Gall, N. Barreau, S. Harel, J. C. Bernede and J. Kessler, “Material Analysis of PVD-Grown Indium Sulphide Buffer Layers for Cu(In,Ga)Se2-Based Solar Cells,” Thin Solid Films, Vol. 480-481, 2005, pp. 138-141. doi:10.1016/j.tsf.2004.11.017
[2] D. Abou-Ras, G. Kostorz, D. Hariskos, R. Menner, M. Powalla, S. Schorr and A. N. Tiwari, “Structural and Chemical Analyses of Sputtered InxSyBuffer Layers in Cu(In,Ga)Se2Thin-Film Solar Cells,” Thin Solid Films, Vol. 517, No. 8, 2009, pp. 2792-2798. doi:10.1016/j.tsf.2008.10.138
[3] S. Spiering, L. Bürkert, D. Hariskos, M. Powalla, B. Dimmler, C. Giesen and M. Heuken, “MOCVD Indium Sulphide for Application as a Buffer Layer in CIGS Solar Cells,” Thin Solid Films, Vol. 517, No. 7, 2009, pp. 2328 2331. doi:10.1016/j.tsf.2008.11.004
[4] S. Spiering, A. Eicke, D. Hariskos, M. Powalla, N. Na ghavi and D. Lincot, “Large-Area Cd-Free CIGS Solar Modules with In2S3Buffer Layer Deposited by ALCVD,” Thin Solid Films, Vol. 451-452, 2004, pp. 562-566. doi:10.1016/j.tsf.2003.10.090
[5] T. Asikainen, M. Ritala and M. Leskel?, “Growth of In2S3 Thin Films by Atomic Layer Epitaxy,” Applied Surface Science, Vol. 82-83, 1994, pp. 122-125. doi:10.1016/0169-4332(94)90206-2
[6] N. A. Allsop, A. Sch?nmann, A. Belaidi, H.-J. Muffler, B. Mertesacker, W. Bohne, E. Strub, J. R?hrich, M. C. Lux Steiner and Ch.-H. Fischer, “Indium Sulfide Thin Films Deposited by the Spray Ion Layer Gas Reaction Tech nique,” Thin Solid Films, Vol. 513, No. 1-2, 2006, pp. 52 56. doi:10.1016/j.tsf.2006.01.019
[7] K. Ernits, D. Brémaud, S. Buecheler, C. J. Hibberd, M. Kaelin, G. Khrypunov, U. Müller, E. Mellikov and A. N. Tiwari, “Characterisation of Ultrasonically Sprayed InxSy Buffer Layers for Cu(In,Ga)Se2 Solar Cells,” Thin Solid Films, Vol. 515, No. 15, 2007, pp. 605-6054. doi:10.1016/j.tsf.2006.12.168
[8] M. T. Herrero, C. Gutierrez, J. M. Guillen, M. A. Dona, A. M. Martinez, R. Chaparro and R. Bayon, “Photovol taic Windows by Chemical Bath Deposition,” Thin Solid Films, Vol. 361-362, 2000, pp. 28-33. doi:10.1016/S0040-6090(99)00830-5
[9] J. F. Trigo, B. Asenjo, J. Herrero and M. T. Gutierrez, “Optical Characterization of In2 S3 Solar Cell Buffer Lay ers Grown by Chemical Bath and Physical Vapor Deposi tion,” Solar Energy Materials and Solar Cells, Vol. 92, No. 9, 2008, pp. 1145-1148. doi:10.1016/j.solmat.2008.04.002
[10] T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer and R. Klenk, “Electro Deposited In2 S3 Buffer Layers for CuInS2 Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 92, No. 10, 2008, pp. 1274-1278. doi:10.1016/j.solmat.2008.04.022
[11] E. B. Yousfi, T. Asikainen, V. Pietu, P. Cowache, M. Powalla and D. Lincot, “Cadmium-Free Buffer Layers Deposited by Atomic Later Epitaxy for Copper Indium Diselenide Solar Cells,” Thin Solid Films, Vol. 361-362, 2000, pp. 183-186. doi:10.1016/S0040-6090(99)00860-3
[12] D. Braunger, D. Hariskos, T. Walter and H. W. Schock, "An 11.4% Efficient Polycrystalline Thin Film Solar Cell Based on CuInS2 with a Cd-Free Buffer Layer,” Solar Energy Materials and Solar Cells, Vol. 40, No. 2, 1996, pp. 97-102. doi:10.1016/0927-0248(95)00069-0
[13] S. Spiering, D. Hariskos, M. Powalla, N. Naghavi and D. Lincot, “CD-Free Cu(In,Ga)Se2 Thin-Film Solar Modules with In2 S3 Buffer Layer by ALCVD,” Thin Solid Films, Vol. 431-432, 2003, pp. 359-363. doi:10.1016/S0040-6090(03)00151-2
[14] E. B. Yousfi, B. Weinberger, F. Donsanti, P. Cowache and D. Lincot, “Atomic Layer Deposition of Zinc Oxide and Indium Sulfide Layers for Cu(In,Ga)Se2 Thin-Film Solar Cells,” Thin Solid Films, Vol. 387, No. 1-2, 2001, pp. 29-32. doi:10.1016/S0040-6090(00)01838-1
[15] D. Hariskos, M. Ruckh, U. Ru¨hle, T. Walter, H. W. Schock, J. Hedstro¨m and L. Stolt, “A Novel Cadmium Free Buffer Layer for Cu(In,Ga)Se2 Based Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 41-42, 1996, pp. 345-353. doi:10.1016/0927-0248(96)80009-2
[16] H. W. Schock, “Solar Cells Based on CuInSe2 and Re lated Compounds: Recent Progress in Europe,” Solar Energy Materials and Solar Cells, Vol. 34, No. 1-4, 1994, pp. 19-26. doi:10.1016/0927-0248(94)90020-5
[17] A. M. A. Haleem and M. Ichimura, “Wide Bandgap InS Based Thin Film: Deposition Characterization and Application in SnS Solar Cells,” Japanese Journal of Applied Physics, Vol. 48, 2009, Article ID: 035506. doi:10.1143/JJAP.48.035506
[18] A. M. A. Haleem and M. Ichimura, “Electrochemical Deposition of Indium Sulfide Thin Films Using Two-Step Pulse Biasing,” Thin Solid Films, Vol. 516, No. 21, 2008, pp. 7783-7789. doi:10.1016/j.tsf.2008.03.009
[19] A. M. A. Haleem, M. Kato and M. Ichimura, “Annealing Study of the Electrochemically Deposited InSx Oy Thin Film and Its Photovoltaic Application,” IEICE Transac tions on Electronics, Vol. E92-C, No. 12, 2009, pp. 1464 1469.
[20] A. Goetzberger and C. Hebling, “Photovoltaic Materials, Past, Present, Future,” Solar Energy Materials and Solar Cells, Vol. 62, No. 1-2, 2000, pp. 1-19. doi:10.1016/S0927-0248(99)00131-2
[21] M. T. S. Nair and P. K. Nair, “Simplified Chemical Deposition Technique for Good Quality SnS Thin Films,” Semiconductor Science and Technology, Vol. 6, 1991, p. 132.
[22] A. Tanusevski, “Optical and Photoelectric Properties of SnS Thin Films Prepared by Chemical Bath Deposition,” Semiconductor Science and Technology, Vol. 18, 2003, p. 501. doi:10.1088/0268-1242/18/6/318
[23] Z. Zainal, M. Z. Hussein and A. Ghazali, “Cathodic Elec trodeposition of SnS Thin Films from Aqueous Solution,” Solar Energy Materials and Solar Cells, Vol. 40, No. 4, 1996, pp. 347-357. doi:10.1016/0927-0248(95)00157-3
[24] N. Sato, M. Ichimura, E. Arai and Y. Yamazaki, “Char acterization of Electrical Properties and Photosensitivity of SnS Thin Films Prepared by the Electrochemical Deposition Method,” Solar Energy Materials and Solar Cells, Vol. 85, No. 2, 2005, pp. 153-165. doi:10.1016/j.solmat.2004.04.014
[25] K. Omoto, N. Fathy and M. Ichimura, “Deposition of SnSx Oy Films by Electrochemical Deposition Using Three Step Pulse and Their Characterization,” Japanese Journal of Applied Physics, Vol. 45, 2006, pp. 1500-1505. doi:10.1143/JJAP.45.1500
[26] A. M. A. Haleem and M. Ichimura, “Electrochemical Deposition of Wide Bandgap InGax Sy Oz Thin Films for Solar Cell Applications,” Materials Science and Engi neering B, Vol. 164, No. 3, 2009, pp. 180-185. doi:10.1016/j.mseb.2009.09.013

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.