Share This Article:

A Reward Functional to Solve the Replacement Problem

Abstract Full-Text HTML Download Download as PDF (Size:192KB) PP. 413-418
DOI: 10.4236/ica.2012.34045    5,169 Downloads   6,651 Views   Citations

ABSTRACT

The replacement problem can be modeled as a finite, irreducible, homogeneous Markov Chain. In our proposal the problem was modeled using a Markov decision process and then, the instance was optimized using dynamic programming. We proposed a new functional that includes a reward functional, that can be more helpful in processing industries because it considerate instances like incomes, maintenance costs, fixed costs to replace equipment, purchase price and salvage values; and this functional can be solved with dynamic programming and used to make effective decisions. Two theorems are proved related with this new functional. A numerical example is presented in order to demonstrate the utility of this proposal.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Gress, O. Arango, J. Armenta and A. Reyes, "A Reward Functional to Solve the Replacement Problem," Intelligent Control and Automation, Vol. 3 No. 4, 2012, pp. 413-418. doi: 10.4236/ica.2012.34045.

References

[1] A. Kristensen, “Textbook Notes of Herd Management: Dynamic Programming and Markov Process,” Dina Notat, 1996. http://www.husdyr.kvl.dk/ark/pdf/notat49.pdf
[2] R. A. Howard, “Dynamic Programming and Markov Processes,” The MIT Press, Cambridge, 1960.
[3] E. L. Sernik and S. Marcus, “Optimal Cost and Policy for Markovian Replacement Problem,” Journal of Optimization Theory and Applications, Vol. 71, No. 1, 1991, pp. 105-126. doi:10.1007/BF00940042
[4] S. P. Sethi, G. Sorger and X. Zhou, “Stability of RealTime Lot Scheduling and Machine Replacement Policies with Quality Levels,” IEEE Transactions on Automatic Control, Vol. 45, No. 11, 2000, pp. 2193-2196. doi:10.1109/9.887687
[5] J. D. Sherwin and B. Al-Najjar, “Practical Models for Conditions-Based Monitoring Inspection Intervals,” Journal of Quality in Maintenance Engineering, Vol. 5, No. 3, 1999, pp. 203-209. doi:10.1108/13552519910282665
[6] E. Lewis, “Introduction to Reliability Theory,” Wiley, Singapore City, 1987.
[7] S. Childress and P. Durango-Cohen, “On Parallel Machine Replacement Problems with General Replacement Cost Functions and Stochastic Deterioration,” Naval Research Logistics, Vol. 52, No. 5, 1999, pp. 402-419.
[8] T. Cheng, “Optimal Replacement of Ageing Equipment Using Geometric Programming,” International Journal of Production Research, Vol. 30, No. 9, 1999, pp. 2151-2158. doi:10.1080/00207549208948142
[9] N. Karabakal, C. Bean and J. Lohman, “Solving Large Replacement Problems with Budget Constraints,” The Engineering Economist, Vol. 4, No. 5, 2000, pp. 290-308. doi:10.1080/00137910008967554
[10] T. Dohi, et al., “A Simulation Study on the Discounted Cost Distribution under Age Replacement Policy,” IEMS, Vol. 3, No. 2, 2004, pp. 134-139.
[11] R. Bellman, “Equipment Replacement Policy,” Journal of Society for Industrial and Applied Mathematics, Vol. 3, No. 3, 1955, pp. 133-136.
[12] D. White, “Dynamic Programming,” Holden Day, San Francisco, 1969.
[13] D. Davidson, “An Overhaul Policy for Deteriorating Equipment,” In: A. Jardine, Ed., Operational Research in Maintenance, Manchester University Press, New York, 1970, pp. 1-24.
[14] J. Walker, “Graphical Analysis for Machine Replacement,” International Journal of Operations and Production Management, Vol. 14, No. 10, 1992, pp. 54-63. doi:10.1108/01443579410067252
[15] D. Bertsekas, “Dynamic Programming and Optimal Control,” Athena Scientific, Belmont, 2000.
[16] L. Plá, C. Pomar and J. Pomar, “A Markow Sow Model Representing the Productive Lifespan of Herd Sows,” Agricultural Systems, Vol. 76, No. 1, 2004, pp. 253-272.
[17] L. Nielsen and A. Kristensen, “Finding the K Best Policies in a Finite-Horizon Markov Decision Process,” European Journal of Operation Research, Vol. 175, No. 2, 2006 pp. 1164-1179. doi:10.1016/j.ejor.2005.06.011
[18] L. Nielsen, et al., “Optimal Replacement Policies for Dairy Cows Based on Daily Yield Measurements,” Journal of Dairy Science, Vol. 93, No. 1, 2009, pp. 75-92. doi:10.3168/jds.2009-2209
[19] F. Hillier and G. Lieberman, “Introduction to Operations Research,” Mc. Graw Hill Companies, Boston, 2002.
[20] P. Schrijner and E. Doorn, “The Deviation Matrix of a Continuous-Time Markov Chain,” Probability in the Engineering and Informational Science, Vol. 16, No. 3, 2009, pp. 351-366.
[21] C. Meyer, “Sensitivity of the Stationary Distribution of a Markov Chain,” SIAM Journal of Matrix Applications, Vol. 15, No. 3, 1994, pp. 715-728. doi:10.1137/S0895479892228900
[22] M. Abbad, J. Filar and T. R. Bielecki, “Algorithms for Singularly Perturbed Markov Chain,” Proceedings of the 29th IEEE Conference, Honolulu, 5-7 December 1990, pp. 1402-1407.
[23] E. Feinberg, “Constrained Discounted Decision Processes and Hamiltonian Cycles,” Mathematical Operational Research, Vol. 25, No. 1, 2000, pp. 130-140. doi:10.1287/moor.25.1.130.15210
[24] S. Ross, “Applied Probability Models with Optimization Applications,” Holden Day, San Francisco, 1992.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.