[1]

C. Marastoni and T. Tanisaki. “Radon Transforms for QuasiEquivariant DModules on Generalized Flag Manifolds,” Differential Geometry and Its Applications, Vol. 18, No. 2, 2003, pp. 147176.
doi:10.1016/S09262245(02)001456


[2]

A. Borel, et al, “Algebraic DModules,” 2nd Edition, Academic Press, Boston, 1987.


[3]

S. Gindikin and G. Henkin, “Integral Geometry for Cohomology in qLinear Concave Domains in CP^{n},” Functional Analysis and Its Applications, Vol. 12, 1978, pp. 247261.


[4]

R. J. Baston and M. G. Eastwood, “Invariant Operators,” Twistor in Physics, Cambridge, 1981.


[5]

F. Bulnes, “Integral Geometry and Complex Integral Operators Cohomology in Field Theory on SpaceTime,” Proceedings of 1st International Congress of Applied MathematicsUPVT, Government of State of Mexico, Mexico City, 2009, pp. 4251.


[6]

M. Kashiwara, “Representation Theory and DModules on Flag Varieties,” Astérisque, Vol. 173174, No. 9, 1989, pp. 55109.


[7]

V. Knapp, “HarishChandra Modules and Penrose Transforms,” American Mathematical Society, Mount Holyoke College, 27 June  3 July 1992, pp. 117.


[8]

S. Alexakis, “On Conformally Invariant Differential Operators,” In: A. Juhl, Ed., Families of Conformal Covariant Differential Operators, QCurvature and Holography, Cornell University, Ithaca, 2007, pp. 150


[9]

C. R. Graham, “Non Existence of Curved Conformally Invariant Operators,” 1980, in press.


[10]

S. Gindikin, “Penrose Transform at Flag Domains,” The Erwin Schr?dinger International Institute for Mathematical Physics, Boltzmanngasse 9, A1090, Wien, 2011.


[11]

W. Schmid, “Homogeneous Complex Manifolds and Representations of Semisimple Lie Groups,” In: Representation Theory and Harmonic Analysis on Semisimple Lie Groups, American Mathematical Society, Providence, 1989, pp. 223286.


[12]

A. D’Agnolo and P. Schapira, “RadonPenrose Transform for DModules,” Journal of Functional Analysis, Vol. 139, No. 2, 1996, pp. 349382. doi:10.1006/jfan.1996.0089


[13]

M. Kashiwara and W. Schmid, “QuasiEquivariant DModules, Equivariant Derived Category, and Representations of Reductive Lie Groups, in Lie Theory and Geometry,” Birkh?user, Boston, 1994, pp. 457488.


[14]

R. Penrose, “Twistor Quantization and Curved SpaceTime,” International Journal of Theoretical Physics, Vol. 1, No. 1, 1968, pp. 6199. doi:10.1007/BF00668831


[15]

R. J. Baston and M. G. Eastwood, “The Penrose Transform,” The Clarendon Press Oxford University Press, New York, 1989.


[16]

M. G. Eastwood, R. Penrose and R. O. Wells Jr, “Cohomology and Massless Fields,” Communications in Mathematical Physics, Vol. 78, No. 3, 1981, pp. 305351.
doi:10.1007/BF01942327


[17]

R. Penrose, “Solutions of the ZeroRestMass Equations,” Journal of Mathematical Physics, Vol. 10, 1969, pp. 3839. doi:10.1063/1.1664756


[18]

F. Bulnes, “Cohomology of Moduli Spaces in Differential Operators Classification to the Field Theory (II),” Proceedings of FSDONA11 (Function Spaces, Differential Operators and Nonlinear Analysis), Tabarz Thur, Vol. 1 No. 12, 2011, pp. 122.


[19]

T. N. Bailey and M. G. Eastwood, “Complex ParaConformal Manifolds Their Differential Geometry and Twistor Theory,” Forum Mathematicum, Vol. 3, 1991, pp. 61 103. doi:10.1515/form.1991.3.61


[20]

M. F. Atiyah, “Magnetic Monopoles in Hyperbolic Space,” Oxford University Press, Oxford, 1987, pp. 134.


[21]

S. Gindikin and G. Henkin, “The Penrose Transforms and Complex Integral Geometry Problems,” VINITI, Moscow, pp. 57112.


[22]

A. Kapustin, M. Kreuser and K. G. Schlesinger, “Homological Mirror Symmetry: New Developments and Perspectives,” Springer, Berlin, 2009.


[23]

M. Kashiwara and T. Oshima, “Systems of Differential Equations with Regular Singularities and Their Boundary Value Problems,” Annals of Mathematics, Vol. 106, 1977, pp. 145200. doi:10.2307/1971163


[24]

F. Warner, “Differential Manifolds,” 2nd Edition, SpringerVerlag, Berlin, 1966.


[25]

A. Grothendieck, “Techniques de Construction en Géométrie Analytique. I. Description Axiomatique de l’Espace de Teichmüller et de Ses Variantes,” Séminaire Henri Cartan, Vol. 13, No. 1, 1960, pp. 133.


[26]

D. Mili?i?, “Algebraic DModules and Representation Theory of SemiSimple Lie Groups,” American Mathematical Society, Providence, pp. 133168.


[27]

L. Kefeng, “Recent Results of Moduli Spaces on Riemann Surfaces,” JDG Conferences, Harvard, 27 June3 July 2005.


[28]

C. R. LeBrun, “Twistors, Ambitwistors and Conformal Gravity,” Twistor in Physics, Cambridge, 1981.


[29]

S. Gindikin, “The Penrose Transforms of Flags Domains in F(CP2),” Contemporary Mathematical Physics, Vol. 175, No. 2, 1996, pp. 4956.


[30]

F. Bulnes, and M. Shapiro, “General Theory of Integrals to Analysis and Geometry,” SEPIIPN, IMUNAM, Mexico, 2007.


[31]

S. Schroer, “Some CalabiYau Threefolds with Obstructed Deformations over the Witt Vectors,” Journal Compositio Mathematica, Vol. 140, No. 6, 2004, pp. 1579 1592.


[32]

F. Bulnes, “Research on Curvature of Homogeneous Spaces,” Department of Research in Mathematics and Engineering TESCHA, Government of State of Mexico, Mexico,2010.
http://tesch.edu.mx/DOC/Investigacion%20Doctor.pdf


[33]

L. Mason and D. Skinner, “Heterotic TwistorString Theory,” Oxford University, Oxford, 2007.
arXiv:0708.2276v1 [hepth]


[34]

J. A. Wolf, “The Stein Condition for Cycle Spaces of Open Orbits on Complex Flag Manifolds,” Annals of Ma thematics, Vol. 136, No. 3, 1992, pp. 541555.
doi:10.2307/2946599


[35]

F. Bulnes, “Design of Measurement and Detection De vices of Curvature through of the Synergic Integral Operators of the Mechanics on Light Waves,” Proceedings of IMECE/ASME on Electronics and Photonics, Vol. 5, 2009, pp. 91103. doi:10.1115/IMECE200910038


[36]

F. Bulnes, “On the Last Progress of Cohomological In duction in the Problem of Classification of Lie Groups Representations,” Proceeding of Masterful Conferences, International Conference of Infinite Dimensional Analysis and Topology, IvanoFrankivsk, 27 May 1 June 2009, pp. 2122.


[37]

A. W. Knapp and N. Wallach, “Szego Kernels Associated with Discrete Series,” Inventiones Mathematicae, Vol. 34, No. 3, 1976, pp. 163200. doi:10.1007/BF01403066


[38]

S. Helgason, “The Radon Transform,” In: H. Bass, J. Oesterlé, A. Weinstein and Birkh?user, Eds., Progress in Mathematics, Birkh?user, Boston Mass, 1980.

