Share This Article:

Magnetic Field Intensity/Melatonin-Molarity Interactions: Experimental Support with Planarian (Dugesia sp.) Activity for a Resonance-Like Process

Abstract Full-Text HTML XML Download Download as PDF (Size:260KB) PP. 137-143
DOI: 10.4236/ojbiphy.2012.24017    3,717 Downloads   7,018 Views   Citations

ABSTRACT

Synergistic interactions between specific magnetic field intensities and chemical concentrations are challenging biophysical phenomena. Planarian were exposed to one of five different concentrations of melatonin and to a “geomagnetic”—patterned 7 Hz amplitude modulated magnetic field for 6 min once per hour for 8 hr during six successive nights. The peak average strengths were within the range (50 nT) or outside the range (200 nT) derived by the equation. As predicted by a resonance equation planarian displayed highly statistically significant decreased relative activity within the 50 nT, 10–7 to 10–6 M melatonin conditions compared to lower or higher concentrations. The effect explained about 30% of the variance in these changes of activity. Activity of planarian exposed to the same melatonin concentrations but to the 200 nT field did not differ significantly from each other or from those exposed to the 50 nT field in concentrations of melatonin <10–7 M or >10–6 M. These results suggest the existence of non-linear, “narrow-band” mechanisms involving the numbers of molecules within a distance determined by the boundary of the organism and the intensity of naturally-patterned magnetic fields derived from energy rather than force-based resonances.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Mulligan, N. Gang, G. Parker and M. Persinger, "Magnetic Field Intensity/Melatonin-Molarity Interactions: Experimental Support with Planarian (Dugesia sp.) Activity for a Resonance-Like Process," Open Journal of Biophysics, Vol. 2 No. 4, 2012, pp. 137-143. doi: 10.4236/ojbiphy.2012.24017.

References

[1] M. Cifra, J. Z. Fields and A. Farhadi, “Electromagnetic Cellular Interactions,” Progress in Biophysics and Molecular Biology, Vol. 105, No. 3, 2011, pp. 223-246. doi:10.1016/j.pbiomolbio.2010.07.003
[2] V. Bini and A. Rubin, “Magnetobiology: The kT Paradox and Possible Solutions,” Electromagnetic Biology and Medicine, Vol. 26, No. 1, 2007, pp. 45-62. doi:10.1080/15368370701205677
[3] W. R. Adey, “Tissue Interactions with Nonionizing Electromagnetic Fields,” Physiological Reviews, Vol. 61, No. 2, 1981, pp. 435-513.
[4] S. Engstrom and R. Fitzsimmons, “Five Hypotheses to Examine the Nature of Magnetic Field Transduction in Biological Systems,” Bioelectromagnetism, Vol. 20, 1999, pp. 423-430. doi:10.1002/(SICI)1521-186X(199910)20:7<423::AID-BEM3>3.0.CO;2-W
[5] J. C. Weaver, T. E. Vaughn and G. T. Martin, “Biological Effects Due to Weak Electric and Magnetic Fields: the Temperature Variation Hypothesis,” Biophysics Journal, Vol. 76, No. 6, 1999, pp. 3026-3030. doi:10.1016/S0006-3495(99)77455-2
[6] H. W. Ludwig, “A Hypothesis Concerning the Absorption Mechanisms of Atmospherics in the Nervous System,” International Journal of Biometeorology, Vol. 12, No. 2, 1968, pp. 93-98.
[7] A. R. Liboff, “Cyclotron Resonance in Membrane Transport,” In: B. Norden and C. Ramel, Eds., Interaction Mechanisms of Low Level Electromagnetic Fields and Systems, Oxford Press, Oxford, 1992, pp. 130-147.
[8] V. V. Lednev, “Possible Mechanisms for the Influence of Weak Magnetic Fields on Biological Systems,” Bioelectromagnetism, Vol. 12, No. 2, 1991, pp. 71-75. doi:10.1002/bem.2250120202
[9] M. A. Persinger, “On the Nature of Space-Time in the Perception of Phenomena in Science,” Perceptual and Motor Skills, Vol. 88, 1999, pp. 1210-1216. doi:10.2466/PMS.88.3.1210-1216
[10] A. L. Buchachenko, D. A. Kuznetov and V. L. Berdinsky, “New Mechanisms of Biological Effects of Electromagnetic Fields,” Biophysics, Vol. 51, No. 3, 2006, pp. 545-552. doi:10.1134/S0006350906030249
[11] A. A. Pilla, D. J. Muehsam, M. S. Markov and B. F. Sisken, “EM Signals and Ion/Ligand Binding Kinetics: Prediction of Bioeffective Waveform Parameters,” Biolectrochemistry and Bioenergetics, Vol. 48, No. 1, 1999, pp. 27-34. doi:10.1016/S0302-4598(98)00148-2
[12] J. M. Mullins, T. A. Litovitz, M. Penafiel, A. Desta and D. Krause, “Intermittent Noise Affects EMF-Induced ODC Activity,” Bioelectrochemistry and Bioenergetics, Vol. 44, No. 2, 1998, pp. 237-242. doi:10.1016/S0302-4598(97)00073-1
[13] D. J. Pangopoulous, A. Karabarbounis and L. H. Margaritis, “Mechanisms for the Action of Electromagnetic Fields on Cells,” Biochemical and Biophysical Research Communications, Vol. 298, No. 1, 2002, pp. 95-102. doi:10.1016/S0006-291X(02)02393-8
[14] M. Blank and L. Soo, “Enhancement of Cytochrome Oxidase Activity in 60 Hz Magnetic Fields,” Bioelectrochemistry and Bioenergetics, Vol. 46, No. 1, 1998, pp. 139-143. doi:10.1016/S0302-4598(98)00126-3
[15] T. E. Vaughn and J. C. Weaver, “Molecular Change in Signal-To-Noise Ratio Criteria for Interpreting Experiments Involving Exposure to Biological Systems to Weakly Interacting Electromagnetic Fields,” Bioelectromagnetism, Vol. 26, No. 4, 2005, pp. 305-322. doi:10.1002/bem.20094
[16] T. Alvager and M. M. Moga, “Magnetohydrodynamic Wave Resonance and the Evocation of Epileptiform Activity by Millitesla Magnetic Fields,” International Journal of Neuroscience, Vol. 90, No. 1-2, 1997, pp. 99-104. doi:10.3109/00207459709000629
[17] T. E. Decoursey, “Voltage-Gated Proton Channels and Other Proton Transfer Pathways,” Physiology Reviews, Vol. 83, No. 2, 2002, pp. 475-579.
[18] G. Preparta, “QED Coherence in Matter,” World Scientific, New York, 1995.
[19] J. I. Jacobson, “Pineal-Hypothalalmic Tract Mediation of Picotesla Magnetic Fields in the Treatment of Neurological Disorders,” Pan Nerva Medicine, Vol. 36, 1994, pp. 201-205.
[20] M. A. Persinger, “A Potential Multiple Resonance Mechanism by which Weak Magnetic Fields Affect Molecules and medical problems: the example of melatonin and ‘Multiple Sclerosis’,” Medical Hypotheses, Vol. 66, No. 4, 2006, pp. 811-815. doi:10.1016/j.mehy.2005.09.044
[21] M. A. Persinger, S. A. Koren and G. F. Lafreniere, “A Neuroquantological Approach to How Human Thought Might Affect the Universe,” Neuroquantology, Vol. 6, 2008, pp. 262-271.
[22] R. Hardeland, “New Actions of Melatonin and Their Relevance to Biometeorology,” International Journal of Biometeorology, Vol. 41, 1997, pp. 47-47. doi:10.1007/s004840050053
[23] E. R. Butarelli, C. Pellicano and F. Pontieri, “Neuropharmacology and Behavior in Planarians: Translations to Mammals,” Comparative Biochemistry and Physiology Part C, Vol. 147, 2008, pp. 398-408.
[24] M. T. Itoh, T. Shinozawa and Y. Sumi, “Circadian Rhythms of Melatonin-Synthesizing Enzyme Activities and Melatonin Levels in Planarians,” Brain Research, Vol. 830, No. 1, 1999, pp. 165-173. doi:10.1016/S0006-8993(99)01418-3
[25] K. Okamato, K. Takeuchi and K. Agata, “Neural Projection in Planarian Brain by Fluorescent Dye Tracing,” Zoological Science, Vol. 22, 2005, pp. 535-546. doi:10.2108/zsj.22.535
[26] M.A. Persinger, “10?20 J as the Neuromolecular Quanta in Medicinal Chemistry: An Alternative to the Myriad of Molecular Pathways,” Current Medicinal Chemistry, Vol. 17, 2010, pp. 3094-3098. doi:10.2174/092986710791959701
[27] F. E. Cole and E. R. Graf, “Precambrian ELF and Abiogenesis,” In: M. A. Persinger, Ed., ELF and VLF Electromagnetic Field Effects, Plenum Press, New York, 1974, pp. 243-275. doi:10.1007/978-1-4684-9004-6_9
[28] J. C. Kang, M. Ahn, Y. C. Kim, C. Moon, Y. Lee, M. B. Wie, Y. Lee, Jr. and T. Shin, “Melatonin Ameliorates Autoimmune Encephalomyelitis through Suppression of Intercellular Adhesion Molecule-1,” Journal of Veterinarian Sciences, Vol. 2, 2001, pp. 85-89.
[29] L. L. Cook, and M. A. Persinger, “Suppression of Experimental Allergic Encephalomyelitis Is Specific to the Frequency and Intensity of Nocturnally Applied, Intermittent Magnetic Fields,” Neuroscience Letters, Vol. 292, 2000, pp. 171-174. doi:10.1016/S0304-3940(00)01454-3
[30] L. L. Cook, M. A. Persinger and S. A. Koren, “Differential Effects of Low Frequency, Low Intensity Nocturnal Magnetic Fields Upon Infiltration of Mononuclear Cells and Numbers of Mast Cells in Lewis Rats,” Toxicology Letters, Vol. 118, No. 1-2, 2000, pp. 9-19. doi:10.1016/S0378-4274(00)00259-9
[31] R. Geigert, H. Schimming, W. Koerner, C. Gruednker and V. Hanf, “Induction of Tamoxifen Resistance in Breast Cancer Cells by ELF Electromagnetic Fields,” Biochemical and Biophysical Research Communications, Vol. 336, 2005, pp. 1144-1149. doi:10.1016/j.bbrc.2005.08.243
[32] N. Gang and M. A. Persinger, “Planarian Activity Differences When Maintained in Water Pre-Treated with Magnetic Fields: A Non-Linear Effect,” Electromagnetic Biology and Medicine, Vol. 30, 2011, pp. 198-204. doi:10.3109/15368378.2011.587928
[33] R. P. Bell and B. Shirely, “Changes in Resistance Across Planarians during Regeneration,” Proceedings of the Oklahoma Academy of Sciences, Vol. 58, 1978, pp. 1-3.
[34] M. A. Persinger, C. A. O’Donovan, B. E. McKay and S. A. Koren, “Sudden Death in Rats Exposed to Nocturnal Magnetic Fields That Simulate the Shape and Intensity of Sudden Geomagnetic Activity,” International Journal of Biometeorology, Vol. 49, No. 4, 2005, pp. 256-261. doi:10.1007/s00484-004-0234-2
[35] D. Malagoli, F. Gobba and E. Ottaviani, “Effects of 50-Hz Magnetic Fields on Signalling Pathways of fMLP-Induced Changes in Invertebrate, Immunocytes: The Activation of the Alternative ‘Stress Pathway’,” Biochemica and Biophysica Acta, Vol. 1620, 2003, pp. 185-190. doi:10.1016/S0304-4165(02)00531-7

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.