Share This Article:

Purification of Active Peroxidase Isoenzymes and Their Responses to Nitrogen Fertilization and Rotation of Biomass Sorghum

Abstract Full-Text HTML Download Download as PDF (Size:665KB) PP. 1422-1429
DOI: 10.4236/ajps.2012.310172    3,491 Downloads   5,215 Views   Citations

ABSTRACT

Peroxidases (EC 1.11.1.7) participate in lignin biosynthesis. But peroxidation is not a tool for assaying lignocellulose metabolism because the active cannot yet be separated from the inactive peroxidases. A biochemical tool for assaying plant cell wall responses to agronomic practices is needed in the lignocellulosic feedstock renewable energy industry. Peroxidase of biomass sorghum was purified to 9 - 13 charge isomers by free solution IEF (Rotofor) technique. Free solution IEF was more effective than chromatographic purification of active peroxidase isoenzymes. Native PAGE separated each charge isomer to three anionic and three cationic isoenzymes. Hydrogen peroxide and o-dianisidine assays showed that only 20% - 30% of the isoenzymes displayed normal Michaelis-Menten kinetics. Sorghum planted without nitrogen fertilization induced the hydrogen peroxide noncompetitive inhibition of peroxidase, but 280 kg·ha–1 nitrogen fertilization and 100% sorghum mineral residue return to the soil tripled the concentration of active peroxidase and relieved the inhibition with concomitant increases of 350 kg lignin and 3532 kg·cellulose·ha–1. Nitrogen fertilization without crop rotation induced hydrogen peroxide inhibition of the peroxidase, but nitrogen fertilization and 25% sorghum rotation changed the PI of the active peroxidase from neutral to mildly acidic and relieved the inhibition with concomitant enormous increases of 690 kg lignin and 7151 kg·cellulose·ha–1. Hydrogen peroxide inhibition kinetics is consistent with the known peroxidase-substrate intermediate dead-end complex formation. Lignocellulosic yield was greatest under the agronomic management that combined 280 kg·ha–1 nitrogen fertilizer with 25% sorghum residue, which resulted in a shift of pI value of the active peroxidase due to a reduction in the Km value of the peroxidase. Therefore, up to 75% of sorghum biomass rather than only 50% can be harvested for conversion to bioenergy products.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Wight, F. Hons, S. South and G. Osuji, "Purification of Active Peroxidase Isoenzymes and Their Responses to Nitrogen Fertilization and Rotation of Biomass Sorghum," American Journal of Plant Sciences, Vol. 3 No. 10, 2012, pp. 1422-1429. doi: 10.4236/ajps.2012.310172.

References

[1] G. Gramss and O. Rudeschko, “Activities of Oxidoreductase Enzymes in Tissue Extracts and Sterile Root Exudates of Three Crop Plants and Some Properties of Peroxidase Component,” New Phytologist, Vol. 138, No. 3, 1998, pp. 401-409. doi:10.1046/j.1469-8137.1998.00128.x
[2] O. Omidiji, J. Okpuzor and O. Otubu, “Peroxidase Activity of Germinating Sorghum Bicolor Grains: Effect of Some Cations,” Journal of Science Food Agriculture, Vol. 82, No. 15, 2002, pp. 1881-1885. doi:10.1002/jsfa.1144
[3] W. He, H. Jia, Li. Yan, J. Li, H. Zhao, L. Mi and Z. Zheng, “Understanding the Formation of CuS Conclave Superstructures with Peroxidase-Like Activity,” Nanoscale, Vol. 4, 2012, pp. 3501-3506.
[4] H. B. Dunford, “Horseradish Peroxidase: Structure and Kinetic Properties,” In: K. E. Everse and M. B. Grisham, Eds., Peroxidase in Chemistry and Biology, CRC Press, Boca Raton, 1991, pp. 1-24.
[5] R. W. Whitten, J. J. MacKay and R. R. Sederoff, “Recent Advances in Understanding Lignin Biosynthesis,” Annual Reviews Plant Physiology and Plant Molecular Biology, Vol. 49, 1998, pp. 585-609. doi:10.1146/annurev.arplant.49.1.585
[6] M. Quiroga, C. Guerrero, M. A. Botella, A. B. Iraida, M. I. Medina, F. J. Alonso, S. M. de Forchetti, S. M. Tigier and V. Valpuesta, “A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin,” Plant Physiology, Vol. 122, No. 4, 2000, 1119-1127. doi:10.1104/pp.122.4.1119
[7] L. Gorton, “Carbon Paste Electrodes Modified with Enzymes, Tissues, and Cells,” Electroanalysis, Vol. 7, No. 1, 1995, pp. 23-45. doi:10.1002/elan.1140070104
[8] I. Y. Sakharov, M. K. Vesga, B. Galaev, I. V. Sakharova and O. Y. Pletjushkina, “Peroxidase from Leaves of Palm Tree,” Plant Science, Vol. 161, No. 5, 2001, pp. 853-860. doi:10.1016/S0168-9452(01)00466-6
[9] H. E. Schoemaker, W. H. J. Boesten, W. J. J. van den Tweel, Q. B. Broxterman and J. Kamphuis, “Biocatalysis in Organic Synthesis,” Proceedings of the 6th European Congress on Biotechnology, Florence, June 13-17 1993, pp. 17-26.
[10] J. Andrews, M. Malone, D. S. Thompson, L. C. Ho and K. S. Burton, “Peroxidase Isoenzyme Patterns in the Skin of Maturing Tomato Fruit,” Plant, Cell and Environment, Vol. 23, No. 4, 2000, pp. 415-422. doi:10.1046/j.1365-3040.2000.00555.x
[11] L. Wright, “Worldwide Commercial Development of Bioenergy with Focus on Energy Crop-Based Projects,” Biomass and Bioenergy, Vol. 30, No. 8-9, 2006, pp. 706-714. doi:10.1016/j.biombioe.2005.08.008
[12] D. J. Schuller, N. Ban, R. B. van Huystee, A. McPherson and T. L. Poulos, “The Crystal Structure of Peanut Peroxidase,” Current Biology, Vol. 4, 1996, pp. 311-321.
[13] H. P. R. Maciel, C. M. C. P. Gouvea, M. Toyama, M. Somlka, S. Marangoni and G. M. Pastore, “Extraction, Purification and Biochemical Characterization of a Peroxidase from Copaifera Langdorffi Leaves,” Química Nova, Vol. 30, 2007, pp. 1067-1071. doi:10.1590/S0100-40422007000500003
[14] J. P. Wight, F. M. Hons, J. O. Storlien, T. L. Provin, H. Shahandeh and R. P. Wiedenfeld, “Management Effects on Bioenergy Sorghum Growth, Yield, and Nutrient Uptake,” Biomass and Bioenergy, 2012, in press. doi:10.1016/j.biombioe.2012.06.036
[15] J. M. Powell and F. M. Hons, “Sorghum Stover Removal Effects on Soil Organic-Matter Content, Extractible Nutrients and Crop Yield,” Journal of Sustainable Agriculture, Vol. 2, No. 1, 1991, pp. 25-39. doi:10.1300/J064v02n01_04
[16] A. L. Wright, F. Dou and F. M. Hons, “Crop Species and Tillage Effects on Carbon Sequesteration in Subsurface Soil,” Soil Science, Vol. 172, No. 2, 2007, pp. 124-131. doi:10.1097/SS.0b013e31802d11eb
[17] L. G. Davis, M. D. Dibner and J. F. Battey, “Basic Methods in Molecular Biology,” Elsevier, New York, 1986.
[18] M. A. Quesada, H. A Tigier, M. J. Bukovac and V. Valpuesta, “Purification of an Anionic Isoperoxidase from Peach Seeds and Its Immunological Comparison with Other Anionic Isoperoxidases,” Plant Physiology, Vol. 79, No. 4, 1990, pp. 623-628. doi:10.1111/j.1399-3054.1990.tb00035.x
[19] G. O. Osuji, T. K. Brown, S. M. South, J. C. Duncan and D. Johnson, “Doubling of Crop Yield through Permutation of Metabolic Pathways,” Advances Bioscience and Biotechnology, Vol. 2, 2011, pp. 364-379. doi:10.4236/abb.2011.25054
[20] M. Desimone, A. Henke and E. Wagner, “Oxidative Stress Induces Partial Degradation of the Large Subunit of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase in Isolated Chloroplasts of Barley,” Plant Physiology, Vol. 111, 1996, pp. 789-796.
[21] G. O. Osuji, C. Braithwaite, R. Pointer and J. Reyes, “Pesticide Inactivation of Peanut Glutamate Dehydrogenase: Biochemical Basis of the Enzyme’S Isomerization,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 8, 1999, pp. 3345-3351. doi:10.1021/jf980531v
[22] I. H. Segel, “Biochemical Calculations,” 2nd Edition, J. Wiley & Sons, New York, 1976.
[23] R. D. Perlack, L. L. Wright, A. F. Turhollow, R. L. Graham, B. J. Stokes and D. C. Erbach, “Biomass and Feedstock for a Bioenergy and Bioproducts Industry: Technical Feasibility of a Billion-Ton Annual Study,” ORNL/ TM-2006/66, Oak ridge National Laboratory, Oak ridge, 2005.
[24] G. Gramss and O. Rudeschko, “Activities of Oxidoreductase Enzymes in Tissue Extracts and Sterile Root Exudates of Three Crop Plants and Some Properties of Peroxidase Component,” New Phytologist, Vol. 138, No. 3, 1998, pp. 401-409. doi:10.1046/j.1469-8137.1998.00128.x
[25] O. Omidiji, J. Okpuzor and O. Otubu, “Peroxidase Activity of Germinating Sorghum Bicolor Grains: Effect of Some Cations,” Journal of Science Food Agriculture, Vol. 82, No. 15, 2002, pp. 1881-1885. doi:10.1002/jsfa.1144
[26] W. He, H. Jia, Li. Yan, J. Li, H. Zhao, L. Mi and Z. Zheng, “Understanding the Formation of CuS Conclave Superstructures with Peroxidase-Like Activity,” Nanoscale, Vol. 4, 2012, pp. 3501-3506.
[27] H. B. Dunford, “Horseradish Peroxidase: Structure and Kinetic Properties,” In: K. E. Everse and M. B. Grisham, Eds., Peroxidase in Chemistry and Biology, CRC Press, Boca Raton, 1991, pp. 1-24.
[28] R. W. Whitten, J. J. MacKay and R. R. Sederoff, “Recent Advances in Understanding Lignin Biosynthesis,” Annual Reviews Plant Physiology and Plant Molecular Biology, Vol. 49, 1998, pp. 585-609. doi:10.1146/annurev.arplant.49.1.585
[29] M. Quiroga, C. Guerrero, M. A. Botella, A. B. Iraida, M. I. Medina, F. J. Alonso, S. M. de Forchetti, S. M. Tigier and V. Valpuesta, “A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin,” Plant Physiology, Vol. 122, No. 4, 2000, 1119-1127. doi:10.1104/pp.122.4.1119
[30] L. Gorton, “Carbon Paste Electrodes Modified with Enzymes, Tissues, and Cells,” Electroanalysis, Vol. 7, No. 1, 1995, pp. 23-45. doi:10.1002/elan.1140070104
[31] I. Y. Sakharov, M. K. Vesga, B. Galaev, I. V. Sakharova and O. Y. Pletjushkina, “Peroxidase from Leaves of Palm Tree,” Plant Science, Vol. 161, No. 5, 2001, pp. 853-860. doi:10.1016/S0168-9452(01)00466-6
[32] H. E. Schoemaker, W. H. J. Boesten, W. J. J. van den Tweel, Q. B. Broxterman and J. Kamphuis, “Biocatalysis in Organic Synthesis,” Proceedings of the 6th European Congress on Biotechnology, Florence, June 13-17 1993, pp. 17-26.
[33] J. Andrews, M. Malone, D. S. Thompson, L. C. Ho and K. S. Burton, “Peroxidase Isoenzyme Patterns in the Skin of Maturing Tomato Fruit,” Plant, Cell and Environment, Vol. 23, No. 4, 2000, pp. 415-422. doi:10.1046/j.1365-3040.2000.00555.x
[34] L. Wright, “Worldwide Commercial Development of Bioenergy with Focus on Energy Crop-Based Projects,” Biomass and Bioenergy, Vol. 30, No. 8-9, 2006, pp. 706-714. doi:10.1016/j.biombioe.2005.08.008
[35] D. J. Schuller, N. Ban, R. B. van Huystee, A. McPherson and T. L. Poulos, “The Crystal Structure of Peanut Peroxidase,” Current Biology, Vol. 4, 1996, pp. 311-321.
[36] H. P. R. Maciel, C. M. C. P. Gouvea, M. Toyama, M. Somlka, S. Marangoni and G. M. Pastore, “Extraction, Purification and Biochemical Characterization of a Peroxidase from Copaifera Langdorffi Leaves,” Química Nova, Vol. 30, 2007, pp. 1067-1071. doi:10.1590/S0100-40422007000500003
[37] J. P. Wight, F. M. Hons, J. O. Storlien, T. L. Provin, H. Shahandeh and R. P. Wiedenfeld, “Management Effects on Bioenergy Sorghum Growth, Yield, and Nutrient Uptake,” Biomass and Bioenergy, 2012, in press. doi:10.1016/j.biombioe.2012.06.036
[38] J. M. Powell and F. M. Hons, “Sorghum Stover Removal Effects on Soil Organic-Matter Content, Extractible Nutrients and Crop Yield,” Journal of Sustainable Agriculture, Vol. 2, No. 1, 1991, pp. 25-39. doi:10.1300/J064v02n01_04
[39] A. L. Wright, F. Dou and F. M. Hons, “Crop Species and Tillage Effects on Carbon Sequesteration in Subsurface Soil,” Soil Science, Vol. 172, No. 2, 2007, pp. 124-131. doi:10.1097/SS.0b013e31802d11eb
[40] L. G. Davis, M. D. Dibner and J. F. Battey, “Basic Methods in Molecular Biology,” Elsevier, New York, 1986.
[41] M. A. Quesada, H. A Tigier, M. J. Bukovac and V. Valpuesta, “Purification of an Anionic Isoperoxidase from Peach Seeds and Its Immunological Comparison with Other Anionic Isoperoxidases,” Plant Physiology, Vol. 79, No. 4, 1990, pp. 623-628. doi:10.1111/j.1399-3054.1990.tb00035.x
[42] G. O. Osuji, T. K. Brown, S. M. South, J. C. Duncan and D. Johnson, “Doubling of Crop Yield through Permutation of Metabolic Pathways,” Advances Bioscience and Biotechnology, Vol. 2, 2011, pp. 364-379. doi:10.4236/abb.2011.25054
[43] M. Desimone, A. Henke and E. Wagner, “Oxidative Stress Induces Partial Degradation of the Large Subunit of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase in Isolated Chloroplasts of Barley,” Plant Physiology, Vol. 111, 1996, pp. 789-796.
[44] G. O. Osuji, C. Braithwaite, R. Pointer and J. Reyes, “Pesticide Inactivation of Peanut Glutamate Dehydrogenase: Biochemical Basis of the Enzyme’S Isomerization,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 8, 1999, pp. 3345-3351. doi:10.1021/jf980531v
[45] I. H. Segel, “Biochemical Calculations,” 2nd Edition, J. Wiley & Sons, New York, 1976.
[46] R. D. Perlack, L. L. Wright, A. F. Turhollow, R. L. Graham, B. J. Stokes and D. C. Erbach, “Biomass and Feedstock for a Bioenergy and Bioproducts Industry: Technical Feasibility of a Billion-Ton Annual Study,” ORNL/ TM-2006/66, Oak ridge National Laboratory, Oak ridge, 2005.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.