Share This Article:

Any Hamiltonian System Is Locally Equivalent to a Free Particle

Abstract Full-Text HTML Download Download as PDF (Size:112KB) PP. 246-252
DOI: 10.4236/wjm.2012.25030    3,215 Downloads   5,215 Views   Citations

ABSTRACT

In this work we use the Hamilton-Jacobi theory to show that locally all the Hamiltonian systems with n degrees of freedom are equivalent. That is, there is a canonical transformation connecting two arbitrary Hamiltonian systems with the same number of degrees of freedom. This result in particular implies that locally all the Hamiltonian systems are equivalent to that of a free particle. We illustrate our result with two particular examples; first we show that the one-dimensional free particle is locally equivalent to the one-dimensional harmonic oscillator and second that the two-dimensional free particle is locally equivalent to the two-dimensional Kepler problem.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Galindo-Linares, E. Navarro-Morale, G. Silva-Ortigoza, R. Suárez-Xique, M. Marciano-Melchor, R. Silva-Ortigoza and E. Román-Hernández, "Any Hamiltonian System Is Locally Equivalent to a Free Particle," World Journal of Mechanics, Vol. 2 No. 5, 2012, pp. 246-252. doi: 10.4236/wjm.2012.25030.

References

[1] L. D. Landau and E. M. Lifshitz, “Mechanics,” 3rd Edition, Butterworth Heinemann, Oxford, 2000.
[2] H. Goldstein, C. Poole and J. Safko, “Classical Mechanics,” 3rd Edition, Addison Wesley, Boston, 2002.
[3] V. I. Arnold, “Mathematical Methods of Classical Mechanics,” Springer-Verlag, New York, Heidelberg, Berlin, 1984.
[4] D. Bergmann and Y. Frishman, “A Relation between the Hydrogen Atom and Multidimensional Harmonic Oscillators,” Journal of Mathematical Physics, Vol. 44, 1965, pp. 1855-1856. doi:10.1063/1.1704733
[5] M. Moshinsky, “Canonical Transformations and Quantum Me-chanics,” Notes of the Latin American School of Physics, Uni-versity of México, México, 1971.
[6] M. Moshinsky, T. H. Seligman and K. B. Wolf, “Canonical Transformations and the Radial Oscillator and Coulomb Problems,” Journal of Mathe-matical Physics, Vol. 13, No. 6, 1972, pp. 901-907. doi:10.1063/1.1666074
[7] V. I. Arnol’d, “Huygens and Bar-row, Newton and Hooke,” Birkhauser-Verlag, Basel, 1990. doi:10.1007/978-3-0348-9129-5
[8] K. Bohlin, Bull. Astron. 28, (1911) 144.
[9] T. Needham, “Visual Complex Analysis,” Oxford University Press, Oxford, 1997.
[10] T. Needham, “Newton and the Transmutation of Force,” The American Ma-thematical Monthly, Vol. 100, No. 2, 1993, p. 119. doi:10.2307/2323768
[11] D. R. Stump, “Arnold’s Transfor-mation an Example of a Generalized Canonical Transformation,” Journal of Mathematical Physics, Vol. 39, No. 7, 1998, pp. 3661-3669. doi:10.1063/1.532458
[12] G. F. T. del Castillo, “On the Con-nection between the Kepler Problem and the Isotropic Harmonic Oscillator in Classical Mechanics,” Revista Mexicana de Fisica, Vol. 44, No. 4, 1998, pp. 333-338.
[13] G. F. T. del Castillo and F. A. de la Cruz, “Connection between the Kepler Problem and the Maxwell Fish-Eye,” Revista Mexicana de Fisica, Vol. 44, No. 6, 1998, pp. 546-549.
[14] G. F. T. del Castillo, D. A. R. álvarez and I. F. Cárcamo, “The Action of Canonical Transformation on Functions Defined on the Configuration Space,” Revista Mexicana de Fisica, Vol. 56, No. 2, 2010, pp. 113-117.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.