Share This Article:

Effective Soliton Fusion Process at the Advanced Stage of Supercontinuum Generation in Photonic Crystal Fibers

Abstract Full-Text HTML XML Download Download as PDF (Size:2348KB) PP. 211-215
DOI: 10.4236/opj.2012.223032    2,985 Downloads   5,905 Views   Citations


Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. The mechanism of graduate acceleration of trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic crystal fibers. As a result large intensity robust light structures can propagate over significant distances. In the spectral domain fusion-like processes result in development of a new significant band at the long wavelength side of the spectrum.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Driben and N. Zhavoronkov, "Effective Soliton Fusion Process at the Advanced Stage of Supercontinuum Generation in Photonic Crystal Fibers," Optics and Photonics Journal, Vol. 2 No. 3A, 2012, pp. 211-215. doi: 10.4236/opj.2012.223032.


[1] R. R. Alfano and S. L. Shapiro, "Observation of selfphase modulation and small-scale filaments in crystals and glasses" Physical Review Letter, 24, 592 (1970). doi:10.1103/PhysRevLett.24.592
[2] R.R. Alfano, "The Supercontinuum Laser Source. Fundamentals with Updated References" 2nd ed, 2006. doi:10.1007/b106776
[3] J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Review of Modern Physics, 78, 1135-1184 (2006). doi:10.1103/RevModPhys.78.1135
[4] Ho P., Li Q. X., Jimbo T., Ku Y. L. and Alfano R. R.," Supercontinuum pulse generation and propagation in a liquid carbontetrachloride", Applied Optics. 26 (1987) 2700-2702. doi:10.1364/AO.26.002700
[5] R. Driben, A. Husakou, and J. Herrmann" Supercontinuum Generation in Aqueous Colloids Containing Silver Nanoparticles" Optics Letters Vol. 34, No. 14, pp. 2132–2134 (2009). doi:10.1364/OL.34.002132
[6] P.?B. Corkum, C. Rolland, and T. Srinivasan-Rao "Supercontinuum Generation in Gases" Physical Review Letter, 57, 2268 (1986). doi:10.1103/PhysRevLett.57.2268
[7] J. C. Travers, M. H. Frosz, and J. M. Dudley, in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), pp. 32–51. doi:10.1017/CBO9780511750465.004
[8] M. Foster, A.Gaeta, and R. Trebino "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires" Optics Express, Vol. 13, Issue 18, pp. 6848-6855 (2005)
[9] R. Driben, A. Husakou, and J. Herrmann " Supercontinuum Generation in Aqueous Colloids Containing Silver Nanoparticles” Optics Letters Vol. 34, No. 14, pp. 2132–2134 (2009). doi:10.1364/OL.34.002132
[10] N. Zhavoronkov, R. Driben, B. A. Bregadiolli, M. Nalin and B. A. Malomed " Observation of asymmetrical spectrum broadening induced by silver nanoparticles in a heavy-metal oxide glass” Europhysics Letters (EPL) 94, 3, 37011 (2011)
[11] D. V. Skryabin and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Review of Modern Physics, 82, 1287–1299 (2010) doi:10.1103/RevModPhys.82.1287
[12] J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Physical Review Letter, 88, 173901 (2002). doi:10.1103/PhysRevLett.88.173901
[13] A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell “Interaction of an Optical Soliton with a Dispersive Wave,” Physical Review Letter, 95, 213902 (2005). doi:10.1103/PhysRevLett.95.213902
[14] F.Luan, D. V. Skryabin, A. V. Yulin, J. C. Knight, Energy exchange between colliding solitons in photonic crystal fibers“, Optics Express, 14, 9844 (2006). doi:10.1364/OE.14.009844
[15] C. Rotschild, B. Alfassi, M. Segev and O. Cohen, Longrange interactions between optical solitons, Nature Physics, 2, 769 (2006). doi:10.1038/nphys445
[16] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical Rogue Waves,” Nature, 450, 1054-1058 (2007). doi:10.1038/nature06402
[17] R. Driben, and I. Babushkin, "Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic crystal fibers "Workshop on Laser-Matter Interaction 2012, Porquerolles, France.
[18] R. Driben and N. Zhavoronkov, "Supercontinuum spectrum control in microstructure fibers by initial chirp management," Optics Express, 18, 16733-16738 (2010). doi:10.1364/OE.18.016733
[19] K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE Journal of Quantum Electron. 25, 2665-2673 (1989). doi:10.1109/3.40655
[20] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
[21] R. Driben, F. Mitschke, and N. Zhavoronkov, "Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation”, Optics Express Vol. 18, Iss. 25, pp. 25993–25998 (2010). doi:10.1364/OE.18.025993
[22] A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, "Controlling light by light with an optical event horizon" Physical Review Letter, 106, 163901 (2011). doi:10.1103/PhysRevLett.106.163901
[23] F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Optics Letters, 11, 659-661 (1986). doi:10.1364/OL.11.000659

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.