Share This Article:

Phase Behavior of Sphere-Forming Triblock Copolymers in Films

Abstract Full-Text HTML Download Download as PDF (Size:762KB) PP. 163-167
DOI: 10.4236/ojapps.2012.23023    3,216 Downloads   5,802 Views   Citations

ABSTRACT

The self-assembly of sphere-forming triblock copolymers confined between two thin homogeneous surfaces is investigated based on mean-field dynamic density functional theory. The morphologies deviating from the bulk sphere-forming phase are revealed, including cylinders oriented perpendicular to the surface, cylinders oriented parallel to the surface, perforated lamellae and lamellae by varying film thickness and surface field strength. The phase diagram of surface reconstruction is also constructed. By comparing the present phase diagram with the other relevant phase diagram for the cylinder-forming triblock copolymer film, the difference between the sphere-forming and the cylinder-forming triblock copolymer thin film is discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Tan, Q. Song, X. Yang and Y. Deng, "Phase Behavior of Sphere-Forming Triblock Copolymers in Films," Open Journal of Applied Sciences, Vol. 2 No. 3, 2012, pp. 163-167. doi: 10.4236/ojapps.2012.23023.

References

[1] Y. Liu, W. Zhao, X. Zheng, A. King, A. Singh, M. H. Rafailovich, J. Sokolov, K. H. Dai, E. J. S. Kramer, A.Schwarz, O. Gebizlioglu, and S. K. Sinha, “Surface-induced ordering in a asymmetric Block Copolymers,” Macromolecules, Vol. 27, No. 14, 1994, pp. 4000- 4010. doi:10.1021/ma00092a047
[2] M. A. van Dijk and R. van den Berg, “Ordering Phenomena in Thin Block Copolymer Films Studied Using Atomic Force Microscopy,” Macromolecules, Vol. 28, No. 20, 1995, pp. 6773-6778. doi:10.1021/ma00124a011
[3] H. P. Huinink, J. C. M. Brokken-Zijp, M. A. van Dijk, and G. J. A. Sevink, “Surface-Induced Transition in Thin Films of Asymmetric Diblock Copolymers,” Macromolecules, Vol. 34, No. 15, 2001, pp. 5325-5330. doi:10.1021/ma000015h
[4] Q. Wang, P. F. Nealey, and J. J. de Pablo, “Monte Carlo Simulations of Asymmetric Diblock Copolymer Thin Films Confined Between Two Homogeneous Surfaces,” Macromolecules, Vol. 34, No. 10, 2001, pp. 3458-3470. doi:10.1021/ma0018751
[5] W. Stocker, J. Beckmann, R. Stadler, and J. P. Rabe, “Surface Reconstruction of the Lamellar Morphology in a Symmetric Poly (styrene-block-butadiene-block -methyl methacrylate) Triblock Copolymer: a Tapping Mode Scanning Force Microscope Study,” Macromolecules, Vol. 29, No. 23, 1996, pp. 7502-7505. doi:10.1021/ma9604000
[6] N. Rehse, A. Knoll, R. Magerle, and G. Krausch, “Surface Reconstructions of Lamellar ABC Triblock Copolymer Mesostructures,” Macromolecules, Vol. 36, No. 9, 2003, pp. 3261-3271. doi:10.1021/ma021134v
[7] A. Knoll, A. Horvat, K. S. Lyakhova, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, and R. Magerle, “Phase Behavior in Thin Films of Cylinder-forming Block Copolymers” Physical Review Letters, Vol. 89, No. 3, 2002, pp. 035501/1-4. doi:10.1103/PhysRevLett.89.035501
[8] A. Horvat, K. S. Lyakhova, G. J. A. Sevink, A. V. Zvelindovsky, and R. Magerle, “Phase Behavior in Thin Films of Cylinder-forming ABA Block Copolymers: Mesoscale Modelling,” Journal of Chemical Physics, Vol. 120, No. 2, 2004, pp. 1117-1126. doi:10.1063/1.1627325
[9] C. B. Tang, J. Bang, G. E. Stein, G. H. Fredrickson, C. J. Hawker, E. J. Kramer, M. Sprung, and J. Wang, “Square Packing and Structural Arrangement of ABC Triblock Copolymer Spheres in Thin Films,” Macromolecules, Vol. 41, No 12, 2008, pp. 4328-4339. doi:10.1021/ma800207n
[10] Available from Accelrys Inc., San Diego, CA.
[11] J. G. E. M. Fraaije, “Dynamic Density Functional Theory for Microphase Separation Kinetics of Block Copolymer Melts,” Journal of Chemical Physics, Vol. 99, No. 11, 1993, pp. 9202-9212. doi:10.1063/1.465536
[12] J. G. E. M. Fraaije, B. A. C. van Vlimmeren, N. M. Maurits, M. Postma, O. A. Evers, C. Hoffmann, P. Altevogt, and G. Goldbeck-Wood, “The Dynamic Mean-field Density Functional Method and its Application to the Mesoscopic Dynamics of Quenched Block Copolymer Melts,” Journal of Chemical Physics, Vol. 106, No.10, 1997, pp. 4260-4269. doi:10.1063/1.473129
[13] B. A. C. van Vlimmeren, N. M. Maurits, A. V. Zvelindovsky, G. J. A. Sevink, and J. G. E. M. Fraaije, “Simulation of 3D Mesoscale Structure Formation in Concentrated Aqueous Solution of the Triblock Polymer Surfactants (ethylene oxide)13(propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33 (propylene oxide)19. Application of Dynamic Mean-field Density Functional Theory” Macromolecules, Vol. 32, No. 3, 1999, pp. 646-656. doi:10.1021/ma980947+
[14] G. J. A. Sevink, A. V. Zvelindovsky, B. A. C. van Vlimmeren, N. M. Maurits and J. G. E.M. Fraaije, “Dynamic of Surface Directed Mesophase Formation in Block Copolymer Melts,” Journal of Chemical Physics, Vol. 110, No.4, 1999, pp. 2250-2256. doi:10.1063/1.477837
[15] N. M. Maurits, B. A. C. van Vlimmeren, and J. G. E. M. Fraaije, “Mesoscopic Phase Separation Dynamics of Compressible Copolymer Melts,” Physical Review E , Vol. 56, No. 1, 1997, pp. 816-825. doi:10.1103/PhysRevE.56.816
[16] B. A. C. van Vlimmeren and J. G. E. M. Fraaije, “Calculation of Noise Distribution in Mesoscopic Dynamics Models for Phase Separation of Multicomponent Complex Fluids,” Computer Physics Communications, Vol. 99, No. 1, 1996, pp. 21-28. doi:10.1016/S0010-4655(96)00125-7
[17] N. M. Maurits, P. Altevogt, and O. A. Evers, “Simple Numerical Quadrature Rules for Gaussian Chain Polymer Density Functional Calculations in 3D and Implementation Platforms,” Computational and Theoretical Polymer Science, Vol. 6, 1996, No. 1-2, pp. 1-8.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.