Share This Article:

High pregnancy and implantation rates can be obtained with preincubation of oocytes before insemination in IVF and ICSI procedures

Abstract Full-Text HTML Download Download as PDF (Size:184KB) PP. 660-666
DOI: 10.4236/health.2012.49104    3,447 Downloads   5,312 Views   Citations

ABSTRACT

Purpose: Evaluate the effect of preincubation of oocytes prior to IVF or ICSI cycles with embryo transfer at blastocyst stage. Methods: Retrospective non randomized study based on secondary analysis of data. Setting: Laboratory of Assisted Reproduction at the Alcivar Hospital. Patients: One hundred-eighteen cycles of IVF and ICSI were analyzed in the present study. The evaluated groups were formed for those patients whose oocytes, after retrieval, were inseminated at 1-3 h (Group I) or 4-6 h (Group II). Results: There was no difference in fertilization rate (83.6% and 78.1%), Day 3 cleavage rate (95.1% and 97.1%), and blastocyst formation (31.1% and 39.1%) for groups I and II respectively. Clinical pregnancy rates (PR: 53.0% vs 22.9%) and implantation rates (IR: 38.1% vs 13.0%) were significantly higher in group II versus group I, respectively (P < 0.05). Conclusions: Preincubation of oocytes before insemination is a factor which raises the PR and IR after the blastocyst transfer.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

García-Ferreyra, J. , Valdivieso, P. , Zambrano, M. and Carpio, J. (2012) High pregnancy and implantation rates can be obtained with preincubation of oocytes before insemination in IVF and ICSI procedures. Health, 4, 660-666. doi: 10.4236/health.2012.49104.

References

[1] Eppig, J.J., Schultz, R.M., O’Brien, M. and Chesnel, F. (1994) Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Development Biology, 164, 1-9. doi:10.1006/dbio.1994.1175
[2] First, N.L., Leibfried-Rutledge, M.L. and Sirard, M.N. (1988) Cytoplasmic control of oocyte maturation and species differences in the development of maturational competence. Progress in Clinical and Biological Research, 267, 1-46.
[3] Hunter, A.G. and Moor, R.M. (1987) Stage dependent effects of inhibiting ribonucleic acids and protein synthesis on meiotic maturation of bovine oocytes in vitro. Journal of Dairy Science, 70, 1646-1651. doi:10.3168/jds.S0022-0302(87)80192-3
[4] Kastrop, P.M., Bevers, M.M., Desetree, O.H.J. and Kruip, T.A.M. (1991) Protein synthesis and phosphorylation patterns of bovine oocytes matured in vivo. Molecular Reproduction and Development, 29, 271-275. doi:10.1002/mrd.1080290309
[5] Farin, C.E. and Yang, L. (1992) Inhibition of germinal vesicle breakdown by 5,6-dichlorobenzimidazole riboside in bovine oocytes maturated in vitro. Theriogenology, 37, 208. doi:10.1016/0093-691X(92)90277-X
[6] Sirard, M.A., Florman, H.M., Leibfried-Rutledge, M.L., Barnes, F.L., Sims, M.L. and First, N.L. (1989) Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biology of Reproduction, 40, 1257-1263. doi:10.1095/biolreprod40.6.1257
[7] Kruip, T.A.M., Cran, D.G., van Beneden, T.H. and Dieleman, S.J. (1983) Structural changes in bovine oocytes during final maturation in vivo. Gamete Research, 8, 29-47. doi:10.1002/mrd.1120080105
[8] Hytell, P., Xa, K.P., Smith, S. and Greve, T. (1986) Ultrastructure of in vitro oocyte maturation in cattle. Journal of the Society for Reproduction and Fertility, 78, 615-625. doi:10.1530/jrf.0.0780615
[9] Levesque, J.T. and Sirard, M.A. (1995) Effects of different kinases and phosphatases on nuclear and cytoplasmic maturation of bovine oocytes. Molecular Reproduction and Development, 42, 114-121. doi:10.1002/mrd.1080420115
[10] Wickramasinghe, D. and Albertini, D.F. (1993) Current topics in developmental biology. Academic Press, San Diego, 125-153.
[11] Barron, D.J., Valdimarsson, G., Paul, D. and Kidder, G.M. (1989) Connexin 43, a gap junction protein, is a persistent oocyte product through preimplantation development. Development Genetics, 10, 318-323. doi:10.1002/dvg.1020100407
[12] Watson, A.J., Westhusin, E., De Sousa, P.A., Betts, D.H. and Barcroft, L.C. (1999) Gene expression regulating blastocyst formation. Theriogenology, 51, 117-133. doi:10.1016/S0093-691X(98)00236-2
[13] Trounson, A.O., Mohr, M.R. and Wood, C. (1982) Effect of delayed insemination on in vitro fertilization, culture and transfer of human embryos. Journal of the Reproduction and Fertility, 64, 285-294. doi:10.1530/jrf.0.0640285
[14] Falcone, P., Gambera, L., Pisoni, M., Lofiego, V., De Leo, V., Mencaglia, L. and Piomboni, P. (2008) Correlation between oocyte preincubation time and pregnancy rate after intracytoplasmic sperm injection. Gynecological Endocrinology, 24, 295-299. doi:10.1080/09513590802095613
[15] Rienzi, L., Ubaldi, F., Anniballo, R., Cerulo, G. and Greco, E. (1998) Preincubation of human oocytes may improve fertilization and embryo quality after intracytoplasmic sperm injection. Human Reproduction, 13, 1014-1019. doi:10.1093/humrep/13.4.1014
[16] Ho, J.Y.-P., Chen, M., Yi, Y.-C., Guu, H.-F. and Ho, E.S.-C. (2003) The effect of preincubation period of oocytes on nuclear maturity, fertilization rate, embryo quality, and pregnancy outcome in IVF and ICSI. Journal of Assisted Reproduction and Genetics, 20, 358-364. doi:10.1023/A:1025476910771
[17] Gardner, D.K., Lane, M., Calderon, I. and Leeton, J. (1996) Environment of the preimplantation human embryo in vivo: Metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertility and Sterility, 65, 349-353.
[18] Fanchin, R., Ayoubi, J.M., Righini, C., Olivennes, F., Schonauer, L.M. and Frydman, R. (2001) Uterine contractility decreases at the time of blastocyst transfers. Human Reproduction, 16, 1115-1119. doi:10.1093/humrep/16.6.1115
[19] Quea, G., Romero, K., García-Velasco, J.A. (2007) Extended embryo culture to increase implantation rate. Reproductive Biomedicine Online, 14, 375-383. doi:10.1016/S1472-6483(10)60882-6
[20] Marek, D., Langley, M., Gardner, D., Phil, D., Confer, N., Doody, K.M. and Doody, K.J. (1999) Introduction of blastocyst culture and transfer for all patients in an in vitro fertilization program. Fertility and Sterility, 72, 1035-1040. doi:10.1016/S0015-0282(99)00409-4
[21] Gardner, D.K., Phil, D., Lane, M., Stevens, J., Schlenker, T. and Schoolkraft, W.B. (2000) Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertility and Sterility, 73, 1155-1158. doi:10.1016/S0015-0282(00)00518-5
[22] Gardner, D.K., Phil, D., Surrey, E., Minjarez, D., Leitz, A., Stevens, J. and Schoolkraft, W.B. (2004) Single blastocyst transfer: A prospective randomized study. Fertility and Sterility, 81, 551-555. doi:10.1016/j.fertnstert.2003.07.023
[23] Henman, M., Catt, J.W., Wood, T., Bowman, M.C., De Boer, K.A. and Jansen, R. (2005) Elective transfer of single fresh blastocysts and later transfer of cryostored blastocysts reduces the twin pregnancy rate in younger women. Fertility and Sterility, 84, 1620-1627. doi:10.1016/j.fertnstert.2005.05.064
[24] Nilsson, S., Waldenstr?m, U., Engstr?m, A.B. and Hellberg, D. (2005) Promising results with 306 single blastocyst transfers. Fertility and Sterility, 83, 1849-1841. doi:10.1016/j.fertnstert.2004.11.079
[25] Papanikolaou, E.G., Camus, M., Kolibianakis, E.M., Van Landuyt, L., Van Steirteghem, A. and Devroey, P. (2006) In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. New England Journal of Medicine, 354, 1139-1146. doi:10.1056/NEJMoa053524
[26] Gardner, D.K. and Schoolcraft, W.B. (1999) In vitro culture of human blastocysts. In: Jansen, R. and Mortimer, D., Eds., Towards Reproductive Certainty: Infertility and Genetics Beyond 1999: The Plenary Proceedings of the 11th World Congress on In Vitro Fertilization and Human Reproductive Genetics, Parthenon Press, Pearl River, 378-388.
[27] Mansour, R. (2005) Minimizing embryo expulsion after embryo transfer: A randomized controlled study. Human Reproduction, 20, 170-174. doi:10.1093/humrep/deh573
[28] Zenzes, M.T., Belkien, L., Bordt, J., Kan, I., Schneider, H.G. and Nieschlag, E. (1985) Cytological investigation of human in vitro fertilization failures. Fertility and Sterility, 43, 883-891.
[29] Kubiak, J.Z. (1989) Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Developmental Biology, 136, 537-545. doi:10.1016/0012-1606(89)90279-0
[30] Eppig, J.J. and O’Brien, M.J. (1996) Development in vitro of mouse oocytes from primordial follicles. Biology of Reproduction, 54, 197-207. doi:10.1095/biolreprod54.1.197
[31] Heikinheimo, O. and Gibbons, W.E. (1998) The molecular mechanisms of oocytes maturation and early embryonic development are unveiling new insights into reproductive medicine. Molecular Human Reproduction, 4, 745-756. doi:10.1093/molehr/4.8.745
[32] Moor, R.M., Dai, Y., Lee, C. and Fulka Jr., J. (1998) Oocyte maturation and embryonic failure. Human Reproduction Update, 4, 223-236. doi:10.1093/humupd/4.3.223
[33] Trounson, A., Anderiesz, A. and Jones, G. (2001) Maturation of human oocytes in vitro and their developmental competence. Reproduction, 121, 51-75. doi:10.1530/rep.0.1210051
[34] Ebner, T., Moser, M., Sommergruber, M., Puchner, M., Wiesinger, R. and Tews, G. (2003) Developmental competence of oocytes showing increased cytoplasmic viscosity. Human Reproduction, 18, 1294-1298. doi:10.1093/humrep/deg232
[35] De Sutter, P., Dozortsev, D., Qian, C. and Dhont, M. (1996) Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Human Reproduction, 11, 595-597. doi:10.1093/HUMREP/11.3.595
[36] Alikani, M., Palermo, G., Adler, A., Bertoli, M., Blake, M. and Cohen, J. (1995) Intracytoplasmic sperm injection in dysmorphic human oocytes. Zygote, 3, 283-288. doi:10.1017/S0967199400002707
[37] Otsuki, J., Okada, A., Morimoto, K., Nagai, Y. and Kubo, H. (2004) The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Human Reproduction, 19, 1591-1597. doi:10.1093/humrep/deh258
[38] Serhal, P.F., Ranieri, D.M., Kinis, M., Marchant, S., Davies, M. and Khadum, I.M. (1997) Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Human Reproduction, 12, 1267-1270. doi:10.1093/humrep/12.6.1267
[39] Loutradis, D., Drakakis, P., Kallianidis, K., Milingos, S., Dendrinos, S. and Michalas, S. (1999) Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection. Fertility and Sterility, 72, 240-244. doi:10.1016/S0015-0282(99)00233-2
[40] Meriano, J.S., Alexis, J., Visram-Zaver, S., Cruz, M. and Casper, R.F. (2001) Tracking of oocytes dysmorphism for ICSI patients may prove relevant to the outcome in subsequent patient cycles. Human Reproduction, 16, 2118-2123. doi:10.1093/humrep/16.10.2118
[41] Krisher, R.L. (2004) The effect of oocyte quality on development. Journal of Animal Science, 82, E14-E23.
[42] Sirard, M.A., Desrosier, S. and Assidi, M. (2007) In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology, 68, S71-S76. doi:10.1016/j.theriogenology.2007.05.053
[43] Pavlok, A., Kopecny, V., Lucas-Hahn, A. and Niemann, H. (1993) Transcriptional activity and nuclear ultrastructure of 8-cell bovine embryos developed by in vitro maturation and fertilization of oocytes from different growth categories of antral follicles. Molecular Reproduction and Development, 35, 233-243. doi:10.1002/mrd.1080350304
[44] Lonergan, P., Monaghan, P., Rizos, D., Boland, M.P. and Gordon, I. (1994) Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization and culture in vitro. Molecular Reproduction and Development, 37, 48-53. doi:10.1002/mrd.1080370107
[45] De Sousa, P., Caveney, A., Westhusin, M.E. and Watson, A.J. (1998) Temporal patterns of embryonic gene expression and their dependence on oogenic factors. Theriogenology, 49, 115-128. doi:10.1016/S0093-691X(97)00406-8
[46] Fair, T., Murphy, M., Rizos, D., Moss, C., Martin, F., Boland, M.P. and Lonergan, P. (2004) Analysis of differential maternal nRNA expression in developmentally competent and incompetent bovine two-cell embryos. Molecular Reproduction and Development, 67, 136-144. doi:10.1002/mrd.10385
[47] Pennetier, S., Uzbekova, S., Perreau, C., Papiller, P., Mermillod, P. and Dalbiès-Tran, R. (2004) Spatio-temporal expression of germ cell marker genes MATER, ZAR1, GFD9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos. Biology of Reproduction, 71, 1359-1366. doi:10.1095/biolreprod.104.030288
[48] Alizadeh, Z., Kageyama, S.I. and Aoki, F. (2005) Degradation of maternal mRNA in mouse embryos: Selective degradation of specific mRNAs after fertilization. Molecular Reproduction and Development, 72, 281-290. doi:10.1002/mrd.20340
[49] Braude, P., Bolton, V. and Moore, S. (1988) Human gene expression first occurs between the four and eight-cell stages of preimplantation development. Nature, 332, 459-461. doi:10.1038/332459a0
[50] Renard, J., Baldacci, P., Richoux-Duranthon, V., Pournin, S., Babinet, C. (1994) A maternal factor affecting mouse blastocyst formation. Development, 120, 797-802.
[51] Guerif, F., Le Gouge, A., Giraudeau, B., Poindron, J., Bidault, R., Gasnier, O. and Royere, D. (2007) Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: A prospective study base don 4042 embryos. Human Reproduction, 362, 735-743.
[52] Rijnders, P.M., Jansen, C.A. (1998) The predictive value of day 3 embryo morphology regarding blastocyst formation, pregnancy and implantation rate after day 5 transfer following in vitro fertilization or cytoplasmic sperm injection. Human Reproduction, 13, 2869-2873. doi:10.1093/humrep/13.10.2869
[53] Milki, A.A., Hinckley, M.D., Gebhardt, J., Dasig, D., Westphal, L.M. and Behr, B. (2002) Accuracy of day 3 criteria for selecting the best embryo. Fertility and Sterility, 77, 1191-1195. doi:10.1016/S0015-0282(02)03104-7
[54] Magli, M.C., Jones, G.M., Gras, L., Gianaroli, L., Korman, I. and Trounson, A.O. (2000) Chromosome mosaicism in day 3 aneuploid embryos that develop to morphologically normal blastocysts in vitro. Human Reproduction, 15, 1781-1786. doi:10.1093/humrep/15.8.1781
[55] Staessen, C., Platteau, P., Van Assche, E., Michiels, A., Tournaye, H., Camus, M., Devroey, P., Liebaers, I. and Van Steirteghem, A. (2004) Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: A prospective randomized controlled trial. Human Reproduction, 19, 2849-2858. doi:10.1093/humrep/deh536
[56] García, J.I., Noriega-Portella, L. and Noriega-Hoces, L. (2011) Effect of vitrification procedure on chromosomal status of embryos achieved from vitrified and fresh oocytes. Health, 3, 467-476. doi:10.4236/health.2011.37077

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.