Share This Article:

Quantum Image Searching Based on Probability Distributions

Abstract Full-Text HTML Download Download as PDF (Size:324KB) PP. 55-60
DOI: 10.4236/jqis.2012.23010    3,720 Downloads   7,479 Views   Citations


A quantum image searching method is proposed based on the probability distributions of the readouts from the quantum measurements. It is achieved by using low computational resources which are only a single Hadamard gate combined with m + 1 quantum measurement operations. To validate the proposed method, a simulation experiment is used where the image with the highest similarity value of 0.93 to the particular test image is retrieved as the search result from 4 × 4 binary image database. The proposal provides a basic step for designing a search engine on quantum computing devices where the image in the database is retrieved based on its similarity to the test image.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

F. Yan, A. Iliyasu, C. Fatichah, M. Tangel, J. Betancourt, F. Dong and K. Hirota, "Quantum Image Searching Based on Probability Distributions," Journal of Quantum Information Science, Vol. 2 No. 3, 2012, pp. 55-60. doi: 10.4236/jqis.2012.23010.


[1] S. E. Venegas-Andraca and S. Bose, “Storing, Processing and Retrieving an Image Using Quantum Mechanics,” Proceedings of SPIE Conference of Quantum Information and Computation, Vol. 5105, 2003, pp. 134-147.
[2] J. I. Latorre, “Image Compression and Entanglement,” arXiv: quant-ph/0510031, 2005.
[3] P. Q. Le, A. M. Iliyasu, F. Dong and K. Hirota, “A Flexible Representation and Invertible Transformations for Images on Quantum Computers,” New Advances in Intelligent Signal Processing, Book Series: Studies in Computational Intelligence, Vol. 372, 2011, pp. 179-202. doi:10.1007/978-3-642-11739-8_9
[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, et al., “Elementary Gates for Quantum Computation,” Physical Review A, Vol. 52, No. 5, 1995, pp. 3457-3467. doi:10.1103/PhysRevA.52.3457
[5] M. Nielsen and I. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, New York, 2000. doi:10.2277/0521635039
[6] P. Q. Le, A. M. Iliyasu, F. Dong and K. Hirota, “Fast Geometric Transformations on Quantum Images,” IAENG International Journal of Applied Mathematics, Vol. 40, No. 3, 2010, pp. 113-123.
[7] P. Q. Le, A. M. Iliyasu, F. Dong and K. Hirota, “Efficient Color Transformations on Quantum Image,” Journal of formatics, Vol. 15, No. 6, 2011, pp. 698-706.
[8] F. Yan, P. Q. Le, A. M. Iliyasu, B. Sun, J. A. Garcia, F. Dong and K. Hirota, “Assessing the Similarity of Quantum Images Based on Probability Measurements,” 2012 IEEE World Congress on Computational Intelligence, Brisbane, 10-15 June 2012, pp. 1-6. doi:10.1109/CEC.2012.6256418
[9] R. S. Bennink, S. J. Bentley and R. W. Boyd, “Quantum and Classical Coincidence Imaging,” Physical Review Letters, Vol. 92, No. 6, 2004, pp. 1-4. doi:10.1103/PhysRevLett.92.069901
[10] A. M. Iliyasu, P. Q. Le, F. Dong and K. Hirota, “A Framework for Representing and Producing Movies on Quantum Computers,” International Journal of Quantum Information, Vol. 9, No. 6, 2011, pp. 1459-1497. doi:10.1142/S0219749911008015
[11] L. Grover, “Quantum Mechanics Helps in Searching for a Needle in a Haystack,” Physical Review Letters, Vol. 79, No. 2, 1997, pp. 325-328. doi:10.1103/PhysRevLett.79.325
[12] M. Inoue, “On the Need for Annotation-Based Image Retrieval,” Proceedings of the ACM-SIGIR Workshop on Information Retrieval in Context, Sheffield, 29 July 2004, pp. 44-46.
[13] A. M. Iliyasu, P. Q. Le, F. Dong and K. Hirota, “Water-Marking and Authentication of Quantum Images Based Restricted Geometric Transformations,” Information Sciences, Vol. 186, No. 1, 2012, pp. 126-149. doi:10.1016/j.ins.2011.09.028

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.