Share This Article:

An Improved System for Shoot Regeneration from Stem Explants of Lombardy Poplar (Populus nigra L. var. italica Koehne)

Abstract Full-Text HTML Download Download as PDF (Size:152KB) PP. 1181-1186
DOI: 10.4236/ajps.2012.39143    3,740 Downloads   6,139 Views   Citations


We developed a system for the regeneration of Lombardy poplar (Populus nigra L. var. italica) shoots from internodal stem explants. Using this system, shoots regenerated from 87% of the stem explants placed on Murashige and Skoog (MS) medium supplemented with 0.1 mg/L indole-3-acetic acid and 0.5 mg/L benzylaminopurine without undergoing callus formation. About 80% of the in vitro regenerated shoots developed roots on MS medium supplemented with 0.5 mg/L indole-3-butyric acid and 0.02 mg/L 1-naphthylacetic acid. Well-rooted seven-to eight-week-old regenerated plants could be transferred to soil for further growth and the survival rate of such plants after three weeks was 88%. The protocol presented here is simple and economical because it does not rely on pre-incubation in callus induction medium or repeated subculture in shoot induction medium containing trans-zeatin, an expensive substance. The in vitro regeneration system presented here could be used for evaluation of radiation sensitivity for Lombardy poplar tissues.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Biswas, T. Mohri, S. Kogawara, Y. Hase and Y. Oono, "An Improved System for Shoot Regeneration from Stem Explants of Lombardy Poplar (Populus nigra L. var. italica Koehne)," American Journal of Plant Sciences, Vol. 3 No. 9, 2012, pp. 1181-1186. doi: 10.4236/ajps.2012.39143.


[1] T. Igasaki, Y. Watanabe, M. Nishiguchi and N. Kotoda, “The Flowering Locus T/Terminal Flower1 Family in Lombardy Poplar,” Plant Cell Physiology, Vol. 49, No. 3, 2008, pp. 291-300. doi:10.1093/pcp/pcn010
[2] K.-H. Han, C. Ma and S. H. Strauss, “An Agrobacterium tumefaciens Transformation Protocol Effective on a Variety of Cottonwood Hybrids (Genus Populus),” Plant Cell Report, Vol. 19, No. 3, 2000, pp. 315-320. doi:10.1007/s002990050019
[3] W. H. Dai, Z. M. Cheng and W. Sargent, “Plant Regeneration and Agrobacterium-mediated Transformation of Two Elite Aspen Hybrid Clones from in Vitro Leaf Tissues,” In Vitro Cellular and Developmental Biology-Plant, Vol. 39, No. 6, 2003, pp. 6-11. doi:10.1079/IVP2002355
[4] N. R. Street, O. Skogstr?m, A. Sj?din, J. Tucker, R. A. Maricela, P, Nilsson, S. Jansson and G. Taylor, “The Genetics and Genomics of Drought Response in Populus,” The Plant Journal, Vol. 48, No. 3, 2006, pp. 321-341. doi:10.1111/j.1365-313X.2006.02864.x
[5] S. Raj, K. Br?utigam, E. T. Hamanishi, O. Wilkins, B. R. Thomas, W. Schroeder, S. D. Mansfield, A. L. Plant and M. M. Campbell, “Clone History Shapes Populus Drought Responses,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 108, No. 30, 2011, pp. 12521-12526. doi:10.1073/pnas.1103341108
[6] S. H. Son and R. B. Hall, “Multiple Shoot Regeneration from Root Organ Cultures of Populus alba × P. grandidentata,” Plant Cell Tissue and Organ Culture, Vol. 20, No. 1, 1990, pp. 53-57. doi:10.1007/BF00034757
[7] T. Ruttink, M. Arend, K. Morreel, V. Strome, S. Rombauts, J. Fromm, R. P. Bhalerao, W. Boerjan and A. Rohde, “A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar,” The Plant Cell, Vol. 19, No. 8, 2007, pp. 2370-2390. doi:10.1105/tpc.107.052811
[8] A. Caruso, F. Chefdor, S. Carpin, C. Depierreux, F. M. Delmotte, G. Kahlem and D. Morabito, “Physiological Characterization and Identification of Genes Differentially Expressed in Response to Drought Induced by PEG 6000 in Populus canadensis Leaves,” Journal of Plant Physiology, Vol. 165, No. 9, 2008, pp. 932-941. doi:10.1016/j.jplph.2007.04.006
[9] A. Matthias and J. Fromn, “Seasonal Change in the Drought Response of Wood Cell Development in Poplar,” Tree Physiology, Vol. 27, No. 7, 2007, pp. 985-992. doi:10.1093/treephys/27.7.985
[10] M. Confalonieri, A. Balestrazzi and S. Bisoffi, “Genetic Transformation of Populus nigra by Agrobacterium tumefaciens,” Plant Cell Reports, Vol. 13, No. 5, 1994, pp. 256-261. doi:10.1007/BF00233315
[11] M. Nishiguchi, K. Yoshida, T. Mohri, T. Igasaki and K. Shinohara, “An Improved Transformation System for Lombardy poplar (Populus nigra var. italica),” Journal of Forest Research, Vol. 11, No. 3, 2006, pp. 175-180. doi:10.1007/s10310-006-0203-1
[12] L. Yi and D. Li, “A Study on Tissue Culture Technique of Populus nigra var. thevestina × (P. diversifolia + P. tomentosa),” Journal of Gansu Agricultural University, Vol. 37, 2002, pp. 180-184.
[13] Y. Tao, F. Li and Y. Li, “Establishment of Tissue Culture Regeneration System of Populus nigra var. thevestina,” Journal of Northwest A&F University, Vol. 37, 2008, pp. 203-207.
[14] L. Zhao, L. Xu, S. Shi and C. Wu, “Establishment of Tissue Culture Regeneration System for Populus nigra × P. pyramidalis,” Protection Forest Science and Technology, Vol. 2008, No. 6, 2008, pp. 22-24.
[15] T. Mohri, N. Yamamoto and K. Shinohara, “Agrobacterium-Mediated Transformation of Lombardy poplar (Populus nigra L. var. italica Koehne) Using Stem Segments,” Journal of Forest Research, Vol. 1, No. 1, 1996, pp. 13-16. doi:10.1007/BF02348333
[16] T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Culture,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
[17] A. Cavusoglu, Z. I. Altas, K. Bajrovic, N. Gozukirmizi, A. Zehir, “Direct and Indirect Plant Regeneration from Various Explants of Eastern Cottonwood Clones (Populus deltoides Bartram ex Marsh.) with Tissue Culture,” African Journal of Biotechnology, Vol. 10, No. 16, 2011, pp. 3216-3221.
[18] R. Yadav, P. Arora, D. Kumar, D. Katyal, N. Dilbaghi and A. Chaudhury, “High Frequency Direct Plant Regeneration from Leaf, Internode, and Root Segments of Easter Cottonwood (Populus deltoids),” Plant Biotechnology Reports, Vol. 3, No. 3, 2009, pp. 175-182. doi:10.1007/s11816-009-0088-5
[19] F. E. Sherif and S. Khattab, “Direct Shoot Regeneration from Leaf, Root and Stem Internode Segments of Male Poplar Trees and the Molecular Analysis of Variant Regenerated Plants,” Journal of American Science, Vol. 7, No. 8, 2011, pp. 200-206.
[20] A. K. Thakur and D. K. Srivastava, “High-efficiency Plant Regeneration from Leaf Explants of Male Himalayan Poplar (Populus ciliata Wall.),” In Vitro Cell Developmental Biology-Plant, Vol. 42, 2006, pp.144-147.
[21] T. Ramanathan, K. Satyavani and S. Gurudeeban, “In Vitro Plant Regeneration from Leaf Primordial of Gum-Bearing Tree Aegle marmelos,” E-International Scientific Research Journal, Vol. 3, No. 1, 2011, pp. 47-50.
[22] A. Tanaka, N. Shikazono and Y. Hase, “Studies on Biological Effects of Ion Beams on Lethality, Molecular Nature of Mutation Rate, and Spectrum of Mutation Phenotype for Mutation Breeding in Higher Plants,” Journal of Radiation Research, Vol. 51, No. 3, 2010, pp. 223-233. doi:10.1269/jrr.09143
[23] S. Arase, Y. Hase, J. Abe, M. Kasai, T. Yamada, K. Kitamura, I. Narumi, A. Tanaka and A. Kanazawa, “Optimization of Ion-Beam Irradiation for Mutagenesis in Soybean: Effects on Plant Growth and Production of Visibly Altered Mutants,” Plant Biotechnology, Vol. 28, 2011, pp. 323-329. doi:10.5511/plantbiotechnology.11.0111a
[24] A. Tanaka and Y. Hase, “Establishment of Ion Beam Technology for Breeding,” In: Q. Y. Shu, Ed., Induced Plant Mutations in the Genomics Era, Food and Agriculture Organization of the United Nations, 2009, pp. 243-246.
[25] M. Hajika, K. Igita and K. Kitamura, “A Line Lacking All the Seed Lipoxygenase Isozymes in Soybean [Glycine max (L.) Merr.] Induced by Gammaray Irradiation,” Japanese Journal of Breeding, Vol. 41, 1991, pp. 507-509.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.