Share This Article:

An Optical Model for the Remote-Sensing of Absorption Coefficients of Phytoplankton in Oceanic/Coastal Waters

Abstract Full-Text HTML Download Download as PDF (Size:2723KB) PP. 19-34
DOI: 10.4236/ars.2012.12003    4,118 Downloads   10,307 Views   Citations

ABSTRACT

A new model for the remote sensing of absorption coefficients of phytoplankton aph (λ) in oceanic and coastal waters is developed and tested with SeaWiFS and MODIS-Aqua data. The model is derived from a rela-tionship of the remote sensing reflectance ratio Rrs (670)/Rrs (490) and aph (490) and aph (670) (from large in-situ data sets). When compared with over 470 independent in-situ data sets, the model provides accurate retrievals of the aph (λ) across the visible spectrum, with mean relative error less than 8%, slope close to unity and R2 greater than 0.8. Further comparison of the SeaWiFS-derived aph (λ) with in-situ aph (λ) values gives similar and consistent results. The model when used for analysis of MODIS-Aqua imagery, provides more realistic values of the phytoplankton absorption coefficients capturing spatial structures of the massive algal blooms in surface waters of the Arabian Sea. These results demonstrate that the new algorithm works well for both the coastal and open ocean waters observed and suggest a potential of using remote sensing to provide knowledge on the shape of phytoplankton absorption spectra that are a requirement in many inverse models to estimate phytoplankton pigment concentrations and for input into bio-optical models that predict carbon fixation rates for the global ocean.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Tiwari and P. Shanmugam, "An Optical Model for the Remote-Sensing of Absorption Coefficients of Phytoplankton in Oceanic/Coastal Waters," Advances in Remote Sensing, Vol. 1 No. 2, 2012, pp. 19-34. doi: 10.4236/ars.2012.12003.

References

[1] A. Morel and L. Prieur, “Analysis of Variations in Ocean Colour,” Limnology and Oceanography, Vol. 22, No. 4, 1977, pp. 709-722. doi:10.4319/lo.1977.22.4.0709
[2] A. Morel and S. Maritorena, “Bio-Optical Properties of Oceanic Waters: A Reappraisal,” Journal of Geophysical research, Vol. 106, No. C4, 2001, pp. 7163-7180. doi:10.1029/2000JC000319
[3] H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker and D. K. Clark, “A Semi-Analytic Model of Ocean Colour,” Journal of Geophysical Research, Vol. 9, No. D9, 1988, pp. 10909-10924. doi:10.1029/JD093iD09p10909
[4] A. Morel, “Optical Modeling of the Upper Ocean in Relation to Its Biogenous Matter Content (Case I Waters),” Journal of Geophysical Research, Vol. 93, No. C9, 1988, pp. 10749-10768. doi:10.1029/JC093iC09p10749
[5] T. Platt and S. Sathyendranath, “Oceanic Primary Production: Estimation by Remote Sensing at Local and Regional Scales,” Science, Vol. 241, No. 4873, 1988, pp. 1613-1620. doi:10.1126/science.241.4873.1613
[6] H. M. Sosik and B. G. Mitchell, “Light Absorption by Phytoplankton, Photosynthetic Pigments and Detritus in the California Current System,” Deep Sea-Research, Vol. 42, No. 10, 1995, pp. 1717-1748. doi:10.1016/0967-0637(95)00081-G
[7] E. H. S. Van Duin, G. Blom, F. J. Los, R. Maffione, R. Zimmerman, C. F. Cerco, D. Mark, E. P. H. Best, Van Duin, et al., “Modeling Underwater Light Climate in Relation to Sedimentation, Resuspension, Water Quality and Autotrophic Growth,” Hydrobiologia, Vol. 444, No. 1-3, 2001, pp. 25-42. doi:10.1023/A:1017512614680
[8] A. Morel, B. Gentili, M. Chami and J. Ras, “Bio-Optical Properties of High Chlorophyll Case 1 Waters, and of Yellow-Substance-Dominated Case 2 Waters,” Deep-Sea Research Part I, Vol. 53, No. 9, 2006, pp. 1439-1559. doi:10.1016/j.dsr.2006.07.007
[9] N. Hoepffner and S. Sathyendranath, “Determination of the Major Groups of Phytoplankton Pigments from the Absorption Spectra of Total Particulate Matter,” Journal of Geophysical Research, Vol. 98, No. C12, 1993, pp. 22789-22804. doi:10.1029/93JC01273
[10] A. Ciotti, M. R. Lewis and J. J. Cullen, “Assessment of the Relationship between Dominant Cell Size in Natural Phytoplakton Communities and the Spectral Shape of the Absorption Coefficient,” Limnology and Oceanography, Vol. 47, No. 2, 2002, pp. 404-417. doi:10.4319/lo.2002.47.2.0404
[11] J. R. Moisan, T. A. H. Moisan and M. A. Linkswiler, “An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra,” Journal of Geophysical Research, Vol. 116, No. C09018, 2011.
[12] L. Prieur and S. Sathyendranath, “An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials,” Limnology and Oceanography, Vol. 26, No. 4, 1981, pp. 671-689. doi:10.4319/lo.1981.26.4.0671
[13] E. Millan-Nunez, M. E. Sieracki, R. Millan-Nunez, J. R. Lara-Lara, G. Gaxiola-Castro and C. C. Trees, “Specific Absorption Coefficient and Phytoplankton Biomass in the Southern Region of the California Current,” Deep Sea Research, Part II, Vol. 51, No. 6-9, 2004, pp. 817-826. doi:10.1016/j.dsr2.2004.05.023
[14] S. A. Garver and D. Siegel, “Inherent Optical Property Inversion of Ocean Colour Spectra and Its Biogeochemical Interpretation 1. Time Series from the Sargasso Sea,” Journal of Geophysical Research, Vol. 102, No. C8, 1997, pp. 18607-18625. doi:10.1029/96JC03243
[15] S. Maritorena, D. A. Siegel and A. R. Peterson, “Optimization of a Semianalytical Ocean Colour Model for Global-Scale Applications,” Applied Optics, Vol. 41, No. 15, 2002, pp. 2705-2714. doi:10.1364/AO.41.002705
[16] Z. P. Lee, K. L. Carder and R. Arnone, “Deriving Inherent Optical Roperties from Water Colour: A Multi-Band Quasi-Analytical Algorithm or Optically Deep Waters,” Applied Optics, Vol. 41, No. 27, 2002, pp. 5755-5772. doi:10.1364/AO.41.005755
[17] P. Shanmugam, Y. H. Ahn, J. H. Ryu and B. Sundarabalan, “An Evaluation of Inversion Models for Retrieval of Inherent Optical Properties from Ocean Colour in Coastal and Open Sea Waters around Korea,” Journal of Oceanography, Vol. 66, No. 6, 2010, pp. 815-830. doi:10.1007/s10872-010-0066-0
[18] T. J. Smyth, G. F. Moore, T. Hirata and J. Aiken, “Semianalytical Model for the Derivation of Ocean Colour Inherent Optical Properties: Description, Implementation, and Performance Assessment,” Applied Optics, Vol. 45, No. 31, 2006, pp. 8116-8131. doi:10.1364/AO.45.008116
[19] E. Boss and C. Roesler, “Over Constrained Linear Matrix Inversion with Tatistical Selection,” In: Z. Lee, Ed., Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, IOCCG, Dartmouth, NS, Canada, IOCCG Rep. 5, 2006.
[20] H. C. van de Hulst, “Light Scattering by Small Particles,” Dover, Mineola, 1981, 470 p.
[21] R. W. Preisendorfer, “Application of Radiative Transfer theory to Light Measurements in the Sea,” Union of Geodetic Geophysical Institute Monograph, Vol. 10, 1961, pp. 11-30.
[22] M. Pope and E. S. Fry, “Absorption Spectrum (380 - 700 nm) of Pure Water. II. Integrating Cavity Measurements,” Applied Optics, Vol. 36, No. 33, 1997, pp. 8710-8723. doi:10.1364/AO.36.008710
[23] R. C. Smith and K. S. Baker, “Optical Properties of the Clearest Natural Waters,” Applied Optics, Vol. 20, No. 2, 1981, pp. 177-184. doi:10.1364/AO.20.000177
[24] A. Bricaud, A. Morel and L. Prieur, “A Absorption by Dissolved Organic Matter in the Sea (yellow substance) the UV and Visible Domains,” Limnology and Oceano- graphy, Vol. 26, No. 1, 1981, pp. 43-53. doi:10.4319/lo.1981.26.1.0043
[25] A. Bricaud, M. Babin, A. Morel and H. Claustre, “Variability in the Chlorophyll-Speci?c Absorption Co- efficients of Natural Phytoplankton: Analysis and Para- meterization,” Journal of Geophysical Research, Vol. 100, No. C7, 1995, pp. 13321-13332. doi:10.1029/95JC00463
[26] A. Bricaud, A. Morel, M. Babin, K. Allali and H. Claustre, “Variations of Light Absorption by Suspended Particles with Chlorophyll a Concentration in Oceanic (Case 1) Waters: Analysis and Implications for Bio- Optical Models,” Journal of Geophysical Research, Vol. 103, No. C13, 1998, pp. 31033-31044. doi:10.1029/98JC02712
[27] P. Shanmugam, “CAAS: An Atmospheric Correction Algorithm for the Remote Sensing of Complex Waters,” Annales Geophysicae, Vol. 30, No. 1, 2012, pp. 203-220. doi:10.5194/angeo-30-203-2012
[28] P. Shanmugam, Y. H. Ahn, J. H. Ryu and B. Sundarabalan, “An Evaluation of Inversion Models for Retrieval of Inherent Optical Properties from Ocean Colour in Coastal and Open Sea around Korea,” Journal of Oceanography, Vol. 66, 2010, pp. 815-830. doi:10.1007/s10872-010-0066-0
[29] K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward and B. G. Mitchell, “Reflectance Model for Quantifying Chlorophyll a in the Presence of Productivity Degradation Products,” Journal of Geophysical Research , Vol. 96, No. C11, 1991, pp. 599-611. doi:10.1029/91JC02117
[30] K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes and D. Kamykowski, “Semianalytic Moderate-Resolution Imag- ing Spectrometer Algorithms for Chlorophyll-a and Absorption with Bio-Optical Domains Based on Nitrate Depletion Temperatures,” Journal of Geophysical Re- search, Vol. 104, No. C3, 1999, pp. 5403-5421. doi:10.1029/1998JC900082
[31] C. S. Yentsch and D. A. Phinney, “Spectral Fluorescence: An Ataaxonomic Tool for Studying the Structure of Phytoplankton Populations,” Journal of Plankton Re- search, Vol. 7, No. 5, 1985, pp. 617-632. doi:10.1093/plankt/7.5.617
[32] C. S. Yentsch and D. A. Phinney, “A Bridge between Ocean Optics and Microbial Ecology,” Limnology and Oceanography, Vol. 34, No. 8, 1989, pp. 1694-l705. doi:10.4319/lo.1989.34.8.1694
[33] J. E. O'Reilly, S. Moritorena, B. G. Mitchell, D. S. Seigel, K. L. Carder, S. A. Garver, et al., “Ocean Colour Chloro- phyll Algorithms for SeaWiFS,” Journal of Geophysical Research, Vol. 103, No. C11, 1998, pp. 937-953.
[34] R. Miller, C. Del-Castillo and B. McKee, “Remote Sensing of Coastal Aquatic Environments,” Springer, Dord- recht, 2005, p. 347. doi:10.1007/978-1-4020-3100-7
[35] S. Sathyendranath, Ed., “Remote Sensing of Ocean Colour in Coastal, and Other Optically Complex Waters,” Reports of the International Ocean-Colour Coordinating Group, IOCCG, Dartmouth, NS, Canada, Rep. 3, 2000, p. 140.
[36] M. Tzortziou, A. Subramaniam, J. R. Herman, C. L. Gallegos, P. J. Neale and H. L. W. Jr., “Remote Sensing Reflectance and Inherent Optical Properties in the Mid Chesapeake Bay,” Estuarine, Coastal and Shelf Science, Vol. 72, No. 1-2, 2007, pp. 16-32. doi:10.1016/j.ecss.2006.09.018
[37] F. E Hoge and P. E. Lyon, “Satellite Retrieval of Inherent Optical Properties by Linear Matrix Inversion of Oceanic Radiance Models: An Analysis of Model and Radiance Measurements,” Journal of Geophysical Research, Vol. 101, No. C7, 1996, pp. 16631-16648. doi:10.1029/96JC01414
[38] F. E. Hoge and P. E. Lyon, “Spectral Parameters of Inherent Optical Property Models: Method for Satellite Retrieval by Matrix Inversion of an Oceanic Radiance Model,” Applied Optics, Vol. 38, No. 9, 1999, pp. 1657-1662. doi:10.1364/AO.38.001657

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.