Share This Article:

Increasing ZnO Growth Rate by Modifying Oxygen Plasma Conditions in Plasma-Assisted Molecular Beam Epitaxy

Abstract Full-Text HTML XML Download Download as PDF (Size:391KB) PP. 160-164
DOI: 10.4236/wjcmp.2012.23026    3,897 Downloads   6,436 Views   Citations

ABSTRACT

The authors report that the growth rate of ZnO can be significantly increased by modifying the oxygen plasma conditions in plasma-assisted molecular beam epitaxy. Both the aperture diameter and the distance between the plasma source and the substrate affect the growth rate and the quality of the ZnO films. A short source to substrate distance is essential in achieving higher growth rate, which is explained by reduced chance of oxygen atom collisions to accommodate the short oxygen mean free path at high background pressure. At a shorter source to substrate distance, the growth rate is higher with a larger aperture diameter. The quality of the ZnO thin films grown under different conditions is assessed by x-ray diffraction and room-temperature photoluminescence measurements.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Zhao and A. Shen, "Increasing ZnO Growth Rate by Modifying Oxygen Plasma Conditions in Plasma-Assisted Molecular Beam Epitaxy," World Journal of Condensed Matter Physics, Vol. 2 No. 3, 2012, pp. 160-164. doi: 10.4236/wjcmp.2012.23026.

References

[1] D. G. Thomas, “The Exciton Spectrum of Zinc Oxide,” Journal of Physics and Chemistry of Solids, Vol. 15, No. 1-2, 1960, pp. 86-96. doi:10.1016/0022-3697(60)90104-9
[2] S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason and C. W. Litton, “Polarized Photoreflectance Spectra of ExcitonicPolaritions in a ZnO Single Crystal,” Journal of Applied Physics, Vol. 93, No. 1, 2003, pp. 756-758. doi:10.1063/1.1527707
[3] M. Belmoubarik, K. Ohtani and H. Ohno, “Intersubband Transitions in ZnO Multiple Quantum Wells,” Applied Physics Letters, Vol. 92, No. 19, 2008, Article ID: 191906. doi:10.1063/1.2926673
[4] E. Bellotti, K. Driscoll, T. D. Moustakas and R. Paiella, “Monte Carlo Simulation of Terahertz Quantum Cascade Laser Structures Based on Wide-Bandgap Semiconductors,” Journal of Applied Physics, Vol. 105, No. 11, 2009, Article ID: 113103. doi:10.1063/1.3137203
[5] T. C. Damen, S. P. S. Porto and B. Tell, “Raman Effect in Zinc Oxide,” Physical Review, Vol. 142, No. 2, 1966, pp. 570-574. doi:10.1103/PhysRev.142.570
[6] A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo and M. Kawasaki, “Observation of the Fractional Quantum Hall Effect in an Oxide,” Nature Materials, Vol. 9, No. 11, 2010, pp. 889- 893. doi:10.1038/nmat2874
[7] S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren and J. L. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nature Nanotechnology, Vol. 6, No. 8, 2011, pp. 506-511. doi:10.1038/nnano.2011.97
[8] J. Chang, S.-K. Hong, K. Matsumoto, H. Tokunaga, A. Tachibana, S. W. Lee and M.W. Cho, “Growth of ZnO and GaN Films” In: T. Yao and S.-K. Hong, Eds., Oxide and Nitride Semiconductors, Springer, Berlin, 2009, pp. 67-129. doi:10.1007/978-3-540-88847-5_3
[9] Z. Yang, J. H. Lim, S. Chu, Z. Zuo and J. L. Liu, “Study of the Effect of Plasma Power on ZnO Thin Films Growth Using Electron Cyclotron Resonance Plasma- Assisted Molecular-Beam Epitaxy,” Applied Surface Science, Vol. 255, No. 5, 2008, pp. 3375-3380. doi:10.1016/j.apsusc.2008.09.068
[10] W. C. T. Lee, P. Miller, R. J. Reeves and S. M. Durbin, “Effects of Plasma Conditions on Properties of ZnO Films Grown by Plasma-assisted Molecular Beam Epitaxy,” Journal of Vacuum Science & Technology B, Vol. 24, No. 3, 2006, pp. 1514-1518. doi:10.1116/1.2192540
[11] J. F. O’Hanlon, “A User’s Guide to Vacuum Technology,” Wiley, New York, 2003. doi:10.1002/0471467162
[12] P. Fons, K. Iwata, A. Yamada, K. Matsubara and S. Niki, “Uniaxial Locked Epitaxy of ZnO on the Face of Sapphire,” Applied Physics Letters, Vol. 77, No. 12, 2000, pp. 1801-1803. doi:10.1063/1.1311603
[13] X. L. Du, M. Murakami, H. Iwaki and A. Yoshikawa, “Complete Elimination of Multi-Angle Rotation Domains in ZnO Epilayers Grown on (0001) Sapphire Substrate” Physica Status Solidi A, Vol. 192, No. 1, 2002, pp. 183- 188. doi:10.1002/1521-396X(200207)192:1<183::AID-PSSA183>3.0.CO;2-K
[14] M. J. Ying, X. L. Du, Z. X. Mei, Z. Q. Zeng, H. Zheng, Y. Wang, J. F. Jia, Z. Zhang and Q. K. Xue, “Effect of Sap- phire Substrate Nitridation on the Elimination of Rotation Domains in ZnO Epitaxial Films,” Journal of Physics D: Applied Physics, Vol. 37, No. 21, 2004, pp. 3058-3062. doi:10.1088/0022-3727/37/21/017
[15] A. Yoshikawa, X. Q. Wang, Y. Tomita, O. H. Roh, H. Iwaki and T. Ishitani, “Rotation-Domains Suppression and Polarity Control of ZnO Epilayers Grown on Skillfully Treated c-Al2O3 Surfaces,” Physica Status Solidi B, Vol. 241, No. 3, 2004, pp. 620-623. doi:10.1002/pssb.200304236
[16] Z. L. Lu, W. Q. Zou, M. X. Xu and F. M. Zhang, “Struc-Tural and Electrical Properties of Single Crystalline and Bi-Crystalline ZnO Thin Films Grown by Molecular Beam Epitaxy,” Chinese Physics B, Vol. 19, No. 7, 2010, Article ID: 076101. doi:10.1088/1674-1056/19/7/076101
[17] T. Trautnitz, R. Sorgenfrei and M. Fiederle, “Elimination of Rotation Domains in ZnO Thin Films on cPlane Al2O3 Substrates,” Journal of Crystal Growth, Vol. 312, No. 4, 2010, pp. 624-627. doi:10.1016/j.jcrysgro.2009.12.011

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.