Share This Article:

Co-Precipitation Synthesis and Characterization of Nanocrystalline Zinc Oxide Particles Doped with Cu2+ Ions

Abstract Full-Text HTML Download Download as PDF (Size:1524KB) PP. 543-551
DOI: 10.4236/msa.2012.38077    8,057 Downloads   14,965 Views   Citations


Nanocrystalline Cu-doped ZnO particles were synthesized by the co-precipitation method. The composition, structural, optical and magnetic characterizations were performed by energy dispersive X-Ray spectroscopy, X-Ray diffraction, UV-Visible spectrometer, and vibrating sample magnetometer. The results confirmed that nanocrystalline Cu-doped ZnO particles have a hexagonal wurtzite structure with a high degree of crystallization and a crystallite size of 10 - 16 nm. For Cu above 11 at%, the X-Ray diffraction pattern possessed CuO secondary phase which shows the solubility limit of Cu in the ZnO lattice. Up to 11% at Cu, the presence of Cu in the ZnO lattice as Zn substitution indicated by an in- crease in lattice parameter values. Nanoparticles showed weak ferromagnetic characteristics at room temperature. The absence of secondary phase related to magnetic precipitate shown intrinsic ferromagnetic behaviour.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Mukhtar, L. Munisa and R. Saleh, "Co-Precipitation Synthesis and Characterization of Nanocrystalline Zinc Oxide Particles Doped with Cu2+ Ions," Materials Sciences and Applications, Vol. 3 No. 8, 2012, pp. 543-551. doi: 10.4236/msa.2012.38077.


[1] T. Dietl, H. Ohno and F. Matsukura, “Hole-Mediated Ferromagnetism in Tetrahedrally Coordinated Semicon- ductors,” Physical Review B, Vol. 63, 2001, Article ID 195205. doi:10.1103/PhysRevB.63.195205
[2] D. Chakraborti, G. R. Trichy, J. T. Prater and J. Narayan, “The Effect of Oxygen Annealing on ZnO:Cu and ZnO: (Cu, Al) Diluted Magnetic Semiconductors,” Journal of Physics D: Applied Physics, Vol. 40, No. 24, 2007, p. 7606. doi:10.1088/0022-3727/40/24/002
[3] S. Venkataraj, N. Ohash1, I. Sakaguchi, Y. Adachi, T. Ohgaki, H. Ryoken and H. Haneda, “Structural and Magnetic Properties of MnIon Implanted ZnO Films,” Journal of Applied Physics, Vol. 102, No. 1, 2007, Article ID 014905. doi:10.1063/1.2752123
[4] S.-J. Han, J. W. Song, C.-H. Yang, S. H. Park, J.-H. Park, Y. H. Jeong and K. W. Rhie, “A Key to Room-Temperature Ferromagnetism in Fe-Doped ZnO:Cu,” Applied Physics Letters, Vol. 81, No. 22, 2002, pp. 4212-4214. doi:10.1063/1.1525885
[5] K. Ueda, H. Tabata and T. Kawai, “Magnetic and Electric Properties of Transition-Metal-Doped ZnO Films,” Applied Physics Letters, Vol. 79, No. 7, 2001, pp. 988-990. doi:10.1063/1.1384478
[6] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida and T. Ito, “Magnetic and Magneto-Transport Properties of ZnO:Ni Films,” Physica E: Low-Dimensional Systems and Nanostructures, Vol. 10, No. 1-3, 2001, pp. 260-264. doi:10.1016/S1386-9477(01)00095-9
[7] S. J. Han, T. H. Jang, Y. B. Kim, B. G. Park, J. H. Park and Y. H. Jeong, “Magnetism in Mn-Doped ZnO Bulk Samples Prepared by Solid State Reaction,” Applied Physics Letters, Vol. 83, No. 5, 2003, pp. 920-922. doi:10.1063/1.1597414
[8] D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachari, L. Salamanca-Riba and T. Venkatesan, “On the Origin of High-Temperature Ferromagnetism in the Low-Temperature-Processed Mn-Zn-O System,” Nature Matter, Vol. 3, No. 10, 2004, pp. 709-714. doi:10.1038/nmat1221
[9] H. L. Liu, J. H. Yang, Z. Hua, Y. J. Zhang, L. L. Yang, L. Xiao and Z. Xie, “The Structure and Magnetic Properties of Cu-Doped ZnO Prepared by Sol-Gel Method,” Applied Surface Science, Vol. 256, No. 13, 2010, pp. 4162-4165.
[10] T. S. Herng, S. P. Lau, S. F. Yu, H. Y. Yang, X. H. Ji, J. S. Chen, N. Yasui and H. Inaba, “Origin of Room Temperature Ferromagnetism in ZnO:Cu Films,” Journal of Applied Physics, Vol. 99, No. 8, 2006, Article ID 086101. doi:10.1063/1.2190711
[11] A. Tiwari, M. Snure, D. Kumar and J. T. Abiade, “Ferromagnetism in Cu-Doped ZnO Films: Role of Charge Carriers,” Applied Physics Letters, Vol. 92, No. 6, 2008, Article ID 062509. doi:10.1063/1.2857481
[12] D. B. Buchholz, R. P. H. Chang, J.-Y. Song and J. B. Ketterson, “Room-Temperature Ferromagnetism in Cu- Doped ZnO Thin Films,” Applied Physics Letters, Vol. 87, No. 8, 2005, Article ID 082504. doi:10.1063/1.2032588
[13] L.-H. Ye, A. J. Freeman and B. Delley, “Half-Metallic Ferromagnetism in Cu-Doped ZnO: Density Functional Calculations,” Physical Review B, Vol. 73, 2006, Article ID 033203. doi:10.1103/PhysRevB.73.033203
[14] K. Sato and H. Katayama-Yoshida, “Microdischarge Optical Emission Spectroscopy as a Novel Diagnostic Tool for Metalorganic Chemical Vapor Deposition of (Ba, Sr)TiO3 Films,” JJAP: Japanese Journal of Applied Physics, Vol. 39, 2000, pp. 555-559. doi:10.1143/JJAP.39.555
[15] D. L. Hou, X. J. Ye, H. J. Meng, H. J. Zhou, X. L. Li, C. M. Zhen and G. D. Tang, “Magnetic Properties of n-Type Cu-Doped ZnO Thin Films,” Applied Physics Letters, Vol. 90, No. 14, 2007, Article ID 142502. doi:10.1063/1.2719034
[16] M. S. Park and B. I. Min, “Ferromagnetism in ZnO Codoped with Transition Metals: Zn1?x(FeCo)xO and Zn1?x(FeCu)xO,” Physical Review B, Vol. 68, 2003, Article ID 224436.
[17] S. W. Jung, S-J. An, G.-C. Yi, C.-U. Jung, S.-I. Lee and S. Cho, “Ferromagnetic Properties of Zn1?xMnxO Epitaxial Thin Films,” Applied Physics Letters, Vol. 80, No. 4, 2002, pp. 4561-4563. doi:10.1063/1.1487927
[18] U. Ilyas, R. S. Rawat, T. L. Tan, P. Lee, R. Chen, H. D. Sun, F. J. Li and S. Zhang, “Enhanced Indirect Ferromagnetic p-d Exchange Coupling of Mn in Oxygen Rich ZnO:Mn Nanoparticles Synthesized by Wet Chemical Method,” Journal of Applied Physics, Vol. 111, No. 3, 2012, Article ID 033503. doi:10.1063/1.3679129
[19] S. P. Prakoso and R. Saleh, “Hydrogen Incorporation in Undoped ZnO Nanoparticles,” World Journal of Condensed Matter Physics, Vol. 1, No. 4, 2011, pp. 130-136. doi:10.4236/wjcmp.2011.14019
[20] G. K. Williamson and W. H. Hall, “X-Ray Line Broadening from Filled Aluminium and Wolfram,” Acta Metallurgica, Vol. 1, No. 1, 1953, pp. 22-31. doi:10.1016/0001-6160(53)90006-6
[21] A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Applied Physics Letters, Vol. 87, No. 12, 2005, Article ID 122102. doi:10.1063/1.2053360
[22] R. Viswanatha, S. Chakraborty, S. Basu and D. D Sarma, “Blue-Emitting Copper-Doped Zinc Oxide Nanocrystals,” The Journal of Physical Chemistry B, Vol. 110, No. 45, 2006, pp. 22310-22312.
[23] R. Viswanatha, S. Sapra, B. Satpati, P. V. Satyam, B. N. Dev and D. D. Sarma, “Understanding the Quantum Size Effects in ZnO Nanocrystals,” Journal of Materials Chemistry, Vol. 14, 2004, pp. 661-668.
[24] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio, B. Johansson and G. A. Gehring, “Ferromagnetism above Room Temperature in Bulk and Transparent Thin Films of Mn-Doped ZnO,” Nature Matter, Vol. 2, 2003, pp. 673-677. doi:10.1038/nmat984
[25] A. Jagannatha Reddy, M. K. Kokila, H. Nagabhushana, R. P. S. Chakradhar, C. Shivakumara, J. L. Rao and B. M. Nagabhushana, “Structural, Optical and EPR Studies on ZnO:Cu Nanopowders Prepared via Low Temperature Solution Combustion Synthesis,” Journal of Alloys and Compounds, Vol. 509, No. 17, 2011, pp. 5349-5355. doi:10.1016/j.jallcom.2011.02.043
[26] Y. Chen and X. L. Xu, “Effect of Oxygen Deficiency on Optical Band Gap Shift in Er-Doped ZnO Thin Films,” Physica B: Condensed Matter, Vol. 406, No. 17, 2011, pp. 3121-3124. doi:10.1016/j.physb.2011.03.078
[27] K. G. Kanade, B. B. Kale, J.-O. Baeg, S. M. Lee, C. W. Lee, S.-J. Moon and H. Chang, “Self-Assembled Aligned Cu Doped ZnO Nanoparticles for Photocatalytic Hydrogen Production under Visible Light Irradiation,” Materials Chemistry and Physics, Vol. 102, No. 1, 2007, pp. 98-104. doi:10.1016/j.matchemphys.2006.11.012
[28] M. Y. Ghotbi, N. Bagheri and S. K. Sadrnezhaad, “Nanocrystalline Copper Doped Zinc Oxide Produced from Copper Doped Zinc Hydroxide Nitrate as a Layered Precursor,” Advanced Powder Technology, Vol. 23, No. 3, 2012, pp. 279-283.
[29] H. Kleinwechter, C. Janzen, J. Knipping, H. Wiggers and P. Roth, “Formation and Properties of ZnO Nano-Particles from Gas Phase Synthesis Processes,” Journal of Materials Science, Vol. 37, No. 20, 2002, pp. 4349-4360. doi:10.1023/A:1020656620050
[30] J. Das, I. R. Evans and D. Khushalani, “Zinc Glycolate: A Precursor to ZnO,” Inorganic Chemistry, Vol. 48, No. 8, 2009, pp. 3508-3510. doi:10.1021/ic900067w
[31] R. Saleh, L. Munisa and W. Beyer, “Infrared Absorption in a-SiC:H Alloy Prepared by d.c Sputtering,” Thin Solid Films, Vol. 426, No. 1, 2003, pp. 117-123. doi:10.1016/S0040-6090(03)00003-8
[32] D. M. Joseph, R. Balagopal, R. F. Hicks, L. P. Sadwick and K. L. Wang, “Observation of Carbon Incorporation during Gallium Arsenide Growth by Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 53, No. 22, 1988, pp. 2203-2204. doi:10.1063/1.100281
[33] M. O. Manasreh, J. M. Baranowski, K. Pakula, H. X. Jiang and J. Lin, “Localized Vibrational Modes of Carbon-Hydrogen Complexes in GaN,” Applied Physics Let- ters, Vol. 75, No. 5, 1999, pp. 659-661. doi:10.1063/1.124473
[34] P. Thakur, V. Bisogni, J. C. Cezar, N. B. Brookes, G. Ghiringhelli, S. Gautam, K. H. Chae, M. Subramanian, R. Jayavel and K. Asokan, “Electronic Structure of Cu- Doped ZnO Thin Films by X-Ray Absorption, Magnetic Circular Dichroism, and Resonant Inelastic X-Ray Scattering,” Journal of Applied Physics, Vol. 107, 20110, Article ID 103915.
[35] P. K. Sharma, R. K. Dutta and A. C. Pandey, “Doping Dependent Room-Temperature Ferromagnetism and Structural Properties of Dilute Magnetic Semiconductor ZnO: Cu2+ Nanorods,” Journal of Magnetism and Magnetic Materials, Vol. 321, No. 24, 2009, pp. 4001-4005. doi:10.1016/j.jmmm.2009.07.066
[36] C. Sudakar, J. S. Thakur, G. Lawes, R. Naik and V. M. Naik, “Ferromagnetism Induced by Planar Nanoscale CuO Inclusions in Cu-Doped ZnO Thin Films,” Physical Review B, Vol. 75, 2007, Article ID 054423. doi:10.1103/PhysRevB.75.054423
[37] M. Wei, N. Braddon, D. Zhi, P. A. Midgley, S. K. Chen, M. G. Blamire and J. L. MacManus-Driscoll, “Room Temperature Ferromagnetism in Bulk Mn-Doped Cu2O,” Applied Physics Letters, Vol. 86, No. 7, 2005, Article ID 072514. doi:10.1063/1.1869547
[38] M. S. Seehra, P. Dutta, V. Singh, Y. Zhang and I. Wender, “Evidence for Room Temperature Ferromagnetism in CuxZn1?xO from Magnetic Studies in CuxZn1?xO/CuO Composite,” Journal of Applied Physics, Vol. 101, No. 9, 2007, Article ID 09H107.
[39] L. N. Tong, T. Cheng, H. B Han, J. L. Hu, X. M. He, Y. Tong and C. M. Schneider, “Photoluminescence Studies on Structural Defects and Room Temperature Ferromagnetism in Ni and Ni-H Doped ZnO Nanoparticles,” Journal of Applied Physics, Vol. 108, 2010, Article ID 023906.
[40] Z. H. Wang, D. Y. Geng, S. Guo, W. J. Hu and Z. D. Zhang, “Ferromagnetism and Superparamagnetism of ZnCoO:H Nanocrystals,”Applied Physics Letters, Vol. 92, No. 24, 2008, Article ID 242505. doi:10.1063/1.2948863
[41] D. Chakraborti, J. Narayan and J. T. Prater, “Room Temperature Ferromagnetism in Zn1?xCuxO Thin Films,” Applied Physics Letters, Vol. 90, No. 8, 2007, Article ID 062504. doi:10.1063/1.2450652
[42] L.-H. Ye, A. J. Freeman and B. Delley, “Half-Metallic Ferromagnetism in Cu-Doped ZnO: Density Functional Calculations,” Physical Review B, Vol. 73, 2006, Article ID 033203. doi:10.1103/PhysRevB.73.033203
[43] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald and M. Venkatesan, “Ferromagnetism in Fe-Doped SnO2 Thin Films,” Applied Physics Letters, Vol. 84, No. 8, 2004, pp. 1332-1334. doi:10.1063/1.1650041
[44] W. S. Yan, Z. H. Sun, Z. Y. Pan, Q. H. Liu, T. Yao, Z. Y. Wu, C. Song, F. Zeng, Y. Xie, T. D. Hu and S. Q. Wei, “Oxygen Vacancy Effect on Room-Temperature Ferromagnetism of Rutile Co:TiO2 Thin Films,” Applied Physics Letters, Vol. 94, No. 4, 2009, Article ID 042508. doi:10.1063/1.3075844
[45] Y.-Q. Song, H.-W. Zhang, Q.-Y. Wen, L. Peng and J. Q. Xiao, “Direct Evidence of Oxygen Vacancy Mediated Ferromagnetism of Co Doped CeO2 Thin Films on Al2O3 (0001) Substrates,” Journal of Physics: Condensed Matter, Vol. 20, No. 25, 2008, Article ID 255210. doi:10.1088/0953-8984/20/25/255210
[46] M. El-Hilo, A. A. Dakhel and A. Y. Ali-Mohamed, “Room Temperature Ferromagnetism in Nanocrystalline Ni-Doped ZnO Synthesized by Co-Precipitation,” Journal of Magnetism and Magnetic Materials, Vol. 321, No. 14, 2009, pp. 2279-2283. doi:10.1016/j.jmmm.2009.01.040
[47] Z. H. Wang, D. Y. Geng and Z. D. Zhang, “Room- Temperature Ferromagnetism and Optical Properties of Zn1?xMnxO Nanoparticles,” Solid State Communication Vol. 149, No. 17-18, 2009, pp. 682-684. doi:10.1016/j.ssc.2009.02.016
[48] D. Chakraborti, G. Trichy, J. Narayan, J. T. Prater and D. Kumar, “Effect of Al Doping on the Magnetic and Electrical Properties of Zn(Cu)O Based Diluted Magnetic Semiconductors,” Journal of Applied Physics, Vol. 102, No. 11, 2007, Article ID 113908. doi:10.1063/1.2817824
[49] J. J. Lu, T. C. Lin, S. Y. Tsai, T. S. Mo and K. J. Gan, “Structural, Magnetic And Transport Properties of Ni- Doped ZnO Films,” Journal of Magnetism and Magnetic Materials, Vol. 323, No. 6, 2011, pp. 829-832. doi:10.1016/j.jmmm.2010.11.025

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.