Synthesis and Spectroscopic Characterization of Undoped Nanocrytalline ZnO Particles Prepared by Co-Precipitation

Abstract

A series of undoped nanocrystalline ZnO particles were successfully synthesized at various dry temperatures (100?C - 600?C) using coprecipitation method. The samples were characterized using a variety of experimental methods such as x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), thermal analysis TG-DTA, UV-vis spectroscopy, infrared absorption spectroscopy (FTIR) and electron spin resonance spectroscopy (ESR). According to XRD analysis, all of our ZnO samples posses the hexagonal wurzite structure with average crystallite size increased ranging from 19 - 23 nm as dry temperature increased. Optical absorption spectra show that the band gap shifted to the lower energy with increasing crystallite size. ESR measurements showed the resonance of electron centers with the g values of about 1.96. With increasing dry temperature we observed the decrease of the g values and the increase of the intensities of the ESR signal. In addition an increase in dry temperature results in a pronounce decrease of OH local vibrational modes. The results from ESR measurements are well supported by the results obtained from Infrared absorption spectroscopy and thermal analysis measurements.

Share and Cite:

S. Prakoso and R. Saleh, "Synthesis and Spectroscopic Characterization of Undoped Nanocrytalline ZnO Particles Prepared by Co-Precipitation," Materials Sciences and Applications, Vol. 3 No. 8, 2012, pp. 530-537. doi: 10.4236/msa.2012.38075.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. W. Bunn, “The Lattice Dimensions of Zinc Oxide,” Proceedings of the Physical Society, Vol. 47, No. 5, 1935, pp. 835-842. doi:10.1088/0959-5309/47/5/307
[2] F. Seitz and D. Turnbull, “Solid State Physics: Advances in Research and Application Vol 8,” Academic Press Inc., New York, 1959.
[3] P. H. Kasai, “Electron Spin Resonance Studies of Donors and Acceptors in ZnO,” Physical Review, Vol. 130, 1963, pp. 989-995. doi:10.1103/PhysRev.130.989
[4] U. ?zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, “A Comprehensive Review of ZnO Material and Devices,” Journal of Applied Physics, Vol. 98, 2005, Article ID 041301.
[5] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Physical Review Letters, Vol. 85, 2000, pp. 1012-1015. doi:10.1103/PhysRevLett.85.1012
[6] V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink and M. Driess, “Zinc Oxide Nanoparticles with Defects,” Advanced Functional Materials, Vol. 15, No. 12, 2003, pp. 1945- 1954. doi:10.1002/adfm.200500087
[7] P. K. Sharma, A. C. Pandey, G. Zolnierkiewicz, N. Guskos and C. Rudowicz, “Relationship between Oxygen Defects and the Photoluminescence Property of ZnO Nanoparticles: A Spectroscopic View,” Journal of Applied Physics, Vol. 106, No. 9, 2009, Article ID 094314. doi:10.1063/1.3256000
[8] H. C. Huang and T. E. Hsieh, “Preparation and Characterization of Highly Tansparent UV-Curable ZnO-Acrylic Nanocomposites,” Ceramics International, Vol. 36, No. 4, 2010, pp. 1245-1251. doi:10.1016/j.ceramint.2010.01.010
[9] K. V. Rajeswari and P. Gomathisankar, “Antibacterial and Photocatalytic Activities of Sonochemically Prepared ZnO and Ag-ZnO,” Journal of Alloys and Compounds, Vol. 508, No. 2, 2010, pp. 587-591. doi:10.1016/j.jallcom.2010.08.128
[10] Y. Hu and H. J. Chen, “Preparation and Characterization of Nanocrystalline ZnO Particles from a Hydrothermal Process,” Journal of Nanoparticle Research, Vol. 10, No. 3, 2008, pp. 401-407. doi:10.1007/s11051-007-9264-0
[11] C. S. Lin, C. C. Hwang, W. H. Lee and W. Y. Tong, “Preparation of Zinc Oxyde (ZnO) Powder with Different Types of Morphology by a Combution Synthesis Method,” Materials Science and Engineering: B, Vol. 140, No. 1-2, 2007, pp. 31-37. doi:10.1016/j.mseb.2007.03.023
[12] P. K. Giri, S. Bhattacharyya, D. K. Singh, R. Kesavamoorthy, B. K. Panigrahi and K. G. M. Nair, “Correlation between Microstructure and Optical Properties of ZnO Nanoparticles Synthesized by Ballmiling,” Journal of Applied Physics, Vol. 102, No. 9, 2007, Article ID 093515. doi:10.1063/1.2804012
[13] Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi and D. Xue, “Room Temperature Ferromagnetism of Pure ZnO Nanoparticles,” Journal of Applied Physics, Vol. 105, No. 11, 2009, Article ID 113928. doi:10.1063/1.3143103
[14] A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays and A. Punnoose, “Ferromagnetism in Chemically Synthesized CeO2 Nanoparticles by Ni Doping,” Physical Review B, Vol. 76, 2007, Article ID 165206. doi:10.1103/PhysRevB.76.165206
[15] M. Naeem, S. K. Hasanain and A. Mumtaz, “Electrical Transport and Optical Studies of Ferromagnetic Cobalt Doped ZnO Nanoparticles Exhibiting a Metal-Insulator Transition,” Journal of Physics: Condensed Matter, Vol. 20, No. 2, 2008, Article ID 025210. doi:10.1088/0953-8984/20/02/025210
[16] L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan and A. Deepthy, “Size-Dependent Enhancement of Nonlinear Optical Properties in Nanocolloids of ZnO,” Journal of Applied Physics, Vol. 103, No. 3, 2008, Article ID 033105. doi:10.1063/1.2838178
[17] K. M. Sancier, “ESR Investigation of Photodamage to Zinc Oxide Powders,” Surface Science, Vol. 21, No. 1, 1970, pp. 1-11. doi:10.1016/0039-6028(70)90059-2
[18] A. Hausmann and B. Schallenberger, “Interstitial Oxygen in Zinc Oxide Single Crystals,” Zeitschrift fur Physik, Vol. 31, 1978, pp. 269-273.
[19] M. Schulz, “ESR Experiments on Ga Donors in ZnO Crystals,” Phys Status Solidi, Vol. 27, No. 1, 1975, pp. K5-K8. doi:10.1002/pssa.2210270140
[20] W. E. Carlos, E. R. Glaser and D. C. Look, “Magnetic Resonance Studies of ZnO,” Physical B, Vol. 308, 2001, pp. 976-979. doi:10.1016/S0921-4526(01)00850-X
[21] V. A. Nikitenko, K. E. Tarkpea, I. V. Pykanov and S. G. Stoyukhin, “EPR and Thermoluminescence in ZnO Single Crystals with Ionic Vacancies,” Journal of Applied Spectroscopy, Vol. 68, No. 3, 2001, pp. 502-507. doi:10.1023/A:1011975028398
[22] D. M. Hoffmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker and B. K. Meyer, “Hydrogen: A Relevant Shallow Donor in Zinc Oxide,” Physical Review Letters, Vol. 88, 2002, Article ID 045504. doi:10.1103/PhysRevLett.88.045504
[23] H. Zhou, A. Hofstaetter, D. M. Hofmann and B. K. Meyer, “Magnetic Resonance Studies on ZnO Nanocrystals,” Microelectronic Engineering, Vol. 66, No. 1-4, 2003, pp. 59-64. doi:10.1016/S0167-9317(03)00025-X
[24] J. M. Smith and W. E. Vehse, “ESR of Electron Irradiated ZnO Confirmation of F+ Center,” Physics Letters A, Vol. 31, No. 3, 1970, pp. 147-148. doi:10.1016/0375-9601(70)90199-4
[25] J. M. Meese and D. R. Locker, “Oxygen Displacement Energy in ZnO,” Solid State Communications, Vol. 11, No. 11, 1972, pp. 1547-1550. doi:10.1016/0038-1098(72)90517-0
[26] L. S. Vlasenko and G. D. Watkins, “Optical Detection of Electron Paramagnetic Resonance in Room-Temperature Electron-Irradiated ZnO,” Physical Review B, Vol. 71, 2005, Article ID 125210. doi:10.1103/PhysRevB.71.125210
[27] L. S. Vlasenko, “Magnetic Resonance Studies of Intrinsic Defects in ZnO: Oxygen Vacancy,” Applied Magnetic Resonance, Vol. 39, No. 1-2, 2010, pp. 103-111. doi:10.1007/s00723-010-0140-1
[28] W. Xie and X. Huang, “Synthesis of Biodiesel from Soybean Oil Using Heterogeneous KF/ZnO Catalyst,” Catalysis Letters, Vol. 107, No. 1-2, 2006, pp. 53-59. doi:10.1007/s10562-005-9731-0
[29] A. Hernández, L. Maya, E. Sánchez-Mora and E. M. Sánchez, “Sol-Gel Synthesis, Characterization and Photocatalytic Activity of Mixed Oxide ZnO-Fe2O3,” Journal of Sol-Gel Science and Technology, Vol. 42, No. 1, 2007, pp. 71-78. doi:10.1007/s10971-006-1521-7
[30] J. Das, I. R. Evans and D. Khushalani, “Zinc Glycolate: A Precursor to ZnO,” Inorganic Chemistry, Vol. 48, No. 8, 2009, pp. 3508-3510. doi:10.1021/ic900067w
[31] R. Saleh, M. Munisa and W. Beyer, “Infrared Absorption in a-SiC:H Films Prepared by DC Sputtering,” Thin Solid Films, Vol. 426, No. 1-2, 2003, pp. 117-123. doi:10.1016/S0040-6090(03)00003-8
[32] D. M. Joseph, R. Balagopal, R. F. Hicks, L. P. Sadwick and K. L. Wang, “Observation of Carbon Incorporation during Gallium Arsenide Growth by Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 53, No. 22, 1988, pp. 2203-2204. doi:10.1063/1.100281
[33] M. O. Manasreh, J. M. Baranowski, K. Pakula, H. X. Jiang and J. Lin, “Localized Vibrational Mode of Carbon- Hydrogen Complexes in GaN,” Applied Physics Letters, Vol. 75, No. 5, 1999, pp. 659-661. doi:10.1063/1.124473

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.