How is the biological information arranged in genome?

Abstract

The four nucleotides (bases), A. T. G and C were sophisticatedly arranged in the structural features in a single-strand of genomic DNA, 1) reverse-complement symmetry of base or base sequences, 2) bias of four bases, 3) multiple fractality of the distribution of each four bases depending on the distance in double logarithmic plot (power spectrum) of L (the distance of a base to the next base) vs. P(L) (the probability of the base-distribution at L), regardless species, forms, genome-sizes and GC-contents. In small genomes such as viruses and plasmids, the multiple fractality might be occasionally hard to distinguish clearly with the power-low-tail region (multi-fractal dimension) because of the low base numbers. In this review article, the author showed that 1) the structural features for the biologically active genomic DNA were observed all living cells including the organelle- and the viralgenome, 2) the potentiality of a new analytical method of the genome structure based on the appearance frequency, Sequence Spectrum Method (SSM) could be analyzed DNA, RNA and protein on genome, 3) the structural features of genome might be related the biological complexity. These findings might be useful extremely to understand the living cells, and the entire genome as a “field” of biological information should need to analyze.

Share and Cite:

Takeda, M. (2012) How is the biological information arranged in genome?. American Journal of Molecular Biology, 2, 171-186. doi: 10.4236/ajmb.2012.23019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Crick, F.H.C. (1968) The origin of genetic code. Journal of Molecular Biology, 38, 367-379.
[2] Takeda, M. and Nakahara, M. Structural Features of the nucleotide Sequences of Genomes. (2009) Journal of Computer Aided Chemistry, 10, 38-52. doi:10.2751/jcac.10.38, http://www.jstage.jst.go.jp/browse/jcac.
[3] Takeda, M. (2011) Structural features of the nucleotide sequences of virus and organelle genomes. Journal of Biomedical Science and Engineering, 4, 719-733. doi:10.4236/jbise.2011.411089, http://www.scirp.org/journal/jbise
[4] Nakahara, M. and Takeda, M. (2010a). Characterization of the sequence spectrum of DNA based on the appearance frequency of the nucleotide sequences of the genome- A new method for analysis of genome structure. Journal of Biomedical Science and Engineering, 3, 340- 350. doi:10.4236/jbise.2010.34047, http://www.scirp.org/journal/jbise
[5] Nakahara, M. and Takeda, M. (2010b). Identification of the interactive region by the homology of the sequence spectrum. Journal of Biomedical Science and Engineering, 3, 868-883. doi:10.4236/jbise.2010.39117, http://www.scirp.org/journal/jbise
[6] Takeda, M., Chen, W.-H., Saltzgaber, J. and Douglas, M.G. (1986) Nuclear genes encoding the yeast mitochondrial ATPase complex-analysis of ATP1 coding the F1-ATPase-subunit and its assembly-Journal of Biological Chemistry, 261, 15126-15133.
[7] Takeda, M., Okushiba, T., Satoh, T., Kuniyoshi, S., Morishita, C. and Ichimura, Y. (1995) Three ATP1 genes are present on chromosome II in Saccharomyces cerevisiae. Journal of Biochemistry (Tokyo), 118, 607-613.
[8] Takeda, M., Satoh, H., Ohnishi, K., Satoh, T. and Mabuchi, T. (1999) The three copies of ATP1 gene are arranged in tandem on chromosome II of the yeast Saccharomyces cerevisiae S288C. Yeast, 15, 873-878.
[9] Takeda, M., Nakamura, S. and Matsushita, S. (2010) Genome organization of the three identical ATP1 genes on the left arm of chromosome II of Saccharomyces cerevisiae-sequence analysis of the 35-kb region containing three ATP genes. TOGENJ, 3, 9-17. doi:10.2174/1875693X01003010009, http://www.benthamscience.com/open/togenj/articles/.../9TOGENJ.htm.
[10] Takeda, M., Katayama, H., Satoh, T. and Mabuchi, T. (2005) The three copies of ATP2 gene are arranged in tandem on chromosome X of yeast Saccharomyces cerevisiae. Current Genetics, 47, 265-272. doi:10.1007/s00294-005-0565-5, https://mc.manuscriptcentral.com/currentgenetics.
[11] Ohnishi, K., Ishibashi, S., Kunihiro, M., Satoh, T., Matsubara, K., Oku, S., Ono, B., Mabuchi, T. and Takeda, M. (2003) Studies on the ATP3 gene of Saccharomyces cerevisiae: presence of two closely linked copies, ATP3a and ATP3b, on the right arm of chromosome II. Yeast, 20, 943-954.
[12] Rothstein, R.J. (1983) One-step gene disruption in yeast. Methods in Enzymology, 101, 202-211.
[13] Takeda, M., Fujioka, H., Shimomura, M., Mabuchi, T. and Minami, A. (2011) ATP16 genes and neighboring ORFs are duplicated on chromosome IV in Saccharomyces cerevisiae, Journal of Molecular Biology Research, 1, 2-11. doi:10.5539/jmbr.v1n1p2, http://dx.doi.org/10.5539/jmbr.v1n1p2.
[14] Wilmut, I., Schnieke, A.E., McWhire, J., Kind, A.J. and Campbell, K.H.S. (1997) Viable offspring derived from fetal and adults mammalian cells. Nature, 385, 810-813.
[15] Wolf, P.L., Liggins, G. and Mercola, D. (1997) The cloning debates and progress in Biotechnology. Clinical Chemistry, 43, 2019-2020.
[16] Brenner, S.E. (1999) Errors in genome annotation. Trends in Genetics, 15, 132-133.
[17] Devos, D. and Valencia, (2000) A. Practical limits of function prediction. Proteins, 41, 98-107.
[18] Olson, L.E., Richtsmeiser, J.T., Leszl, J. and Reeves, R.H. (2004) A chromosome 21 critical region does not cause specific Down syndrome phenotype. Science, 306, 687-690.
[19] Olson, L.E., Roper, R.J., Sengstaken, CL., Peterson, E.A., Aquino, V., Galzicki, Z., Slarey, R., Pletnikov, M., Moran, T.H. and Reeves, R.H. Human Molecular Genetics, 16, 774-782.
[20] Watson, J.D. and Crick, F.H.C. (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature (London), 171, 964-967.
[21] Chargaff, E. (1950) Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experimentia, 6, 201-240.
[22] Franklin, R.E. and Gosling, R.G. (1953) Molecular configuration in sodium thymonucleate. Nature, 171, 740-741.
[23] Feughelman, M., Langridge, R., Wilkins, M.H.F., Barclay, R.K. and Hamilton, L.D. (1955) Molecular structure of Deoxyribose nucleic acid and nucleoprotein. Nature, 175, 834-838.
[24] Karkas, J.D., Rudner, R. and Chargaff, E. (1968) Separation of B. subtilis DNA into complementary strands. II. Template functions and composition as determined by transcription by RNA polymerase. Proceedings of National Academy of Science, USA, 60, 915-920.
[25] Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C. et al. (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium. Science, 319, 1215-1220.
[26] Takai, D. and Jones, P.A. (2002) Comprehensive analysis of CpG islands in human chromosome 21 and 22. Proceedings of National Academy of Science, USA, 99, 3740-3745.
[27] Saxonov, S., Berg, P. and Brutlag, D.L. (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct class of promoters. Proceedings of National Academy of Science, USA, 103, 1412-1417.
[28] Hecht A., Strahl-Bolsinger, S. and Grunstein, M. (1996) Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature, 383, 92-96.
[29] Strahl, B.D. and Allis, C.D. (2000) The Language of Covalent Histone Modifications, Nature, 403, 41-45.
[30] Lee, T.I., Rinaldi, N.J., Robert, F., et al. (2002) Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science, 298, 799-804.
[31] Kloc, A., Zaratiegul, M., Nora, E. and Martienssen, R. (2008) RNA interface guide histone modification during the S phase of chromosomal replication. Current Biology, 18, 490-495. DOI 10.1016/j.cub.2008.03.016
[32] Nègre, N., Brown, C.D., Ma, L. et al. (2011) A cis-regulatory map of the Drosophila genome. Nature, 471, 527-531.
[33] Kasanski, A.L. and Slack, F.J. (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for the cancer therapy. Nature Reviews Cancer, 11, 849-864.
[34] Blattner, F.R., Plunkett, G. 3rd., Bloch, C.A. et al. (1997) The complete genome sequence of Escherichia coli K-12. Science, 277, 1453-1462.
[35] Kunst, F., Ogasawara, N., Moszer, I. et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390, 249-256.
[36] Kaneko, T., Sato, S., Kotani, H. et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research, 3, 109-136.
[37] Mewes, H.W., Albermann, K., Bahr, M., Frishman, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S.G., Pfeiffer, F. and Zollner, A. (1997) Overview of the yeast genome. Nature, 387, 7-65.
[38] The C. elegance Sequencing Consortium. (1998) Genome sequence of the Nematode C.elegance: A platform for investigating Biology. Science, 282, 2012-2018.
[39] Adams, M.D., Celniker, S.E., Holt, R.A. et al. (2000) The genome sequence of Drosophila melanogaster. Science, 287, 2185-2195.
[40] Dunham, I., Shimizu, N., Roe, B.A. et al. (1999) The DNA sequence of human chromosome 22. Nature, 402, 489-495.
[41] Hattori, M., Fujiyama, A., Taylor, T.D.et al. (2000) Chromosome 21 mapping and sequencing consortium. The DNA sequence of human chromosome 21. Nature, 405, 311-319.
[42] International Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human]genome. Nature, 409, 860-921.
[43] Venter, J.C., Adams, M.D., Myers, E.W.et al. (2001) The sequence of the human genome. Science, 291, 1304-1351.
[44] NCBI genome data base. (2011) (http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome).
[45] The Sanger Institute. (2011), (http://www.sanger.ac.uk).
[46] Saccharomyces Genome Database. (2011), (http://www.yeastgenome.org/).
[47] The yeast proteome handbook, Third ed.; Proteome, Inc., (1997).
[48] Velculescu, V.E., Zhang, L., Zhou, W., Vogelstein, J., Basral, M.A., Bassett, D.E.Jr., Hieter, P., Vogelstein, B. and Kinzler, K.W. (1997) Characterization of the yeast transcriptome. Cell, 88, 243-51.
[49] Wan, X.F., VerBerkmoes, N.C., McCue, L.A., Stanek, D., Connlly, H., Hauser, L.J., Wu, L., Liu, X., Yan, T., Leaphart, A., Hettich, R.L., Zhou, J. and Thomson, D.K. (2004) Transcriptomic and proteomic characterization of the fur modulon in the metal-reducing bacterium Shewanella oneidensis. Journal of Bacteriology, 186, 8385-8400.
[50] Sakharkar, K.R., Sakharkar, M.K., Culiat, C.T., Chow, V.T. and Pervaiz, S. (2006) Functional and evolutionary analyses on expressed intronless genes in the mouse genome. FEBS Letters, 580, 1472-1478.
[51] Liu, C., Yang, Z., Yang, J., Xia, Z. and Ao, S. (2000) Regulation of the yeast transcription factor PHO2 activity by phosphorylation. Journal of Biological Chemistry, 275, 31972-31978.
[52] Yang, J. and Ao, S.Z. (1996) Interaction of the yeast PHO2 protein or its mutants with the PHO5 UAS in vitro. Sheng Wu Hua Xue Yu Sheng Wu Li Xue Bao (Shanhai) 28, 316-320.
[53] Shimizu, T., Toumoto, A., Ihara, K., Shimizu, M., Kyogoku, Y., Ogawa, N., Oshima, Y. and Hakoshima, T. (1997) Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO Journal, 16, 4689-4697.
[54] Bernardi, G. and Bernardi, G. (1986) Compositional constraints and genome evolution, Journal of Molecular Evolution, 24, 1-11.
[55] Le, S-Y. and Maizei, J.V. (1989) A method for assessing the statistical significances of RNA folding. Journal of Theoretical Biology, 138, 495-510.
[56] Prabhu, V.V. (1993) Symmetry observations in long nucleotide sequence. Nucleic Acids Research, 21, 2797-2800.
[57] Forsdyke, D. R. (1995a) A stem-loop “kissing” model for the initiation of recombination and the origin of intron. Moleclar Biology of Evolution, 12, 949-958.
[58] Forsdyke, D.R. (1995b) Reciprocal relationship between stem-loop potential and substitution density in retroviral quasispecies under positive Darwinian selection. Journal of Molecular Evolution, 41, 1022-1037.
[59] Searls, D.B. and Murphy, K. (1995) Automatic-theoretic model of mutation and alignment. Proceedings of The 3rd International Confer. Intelligent Systems Molecular Biology, 341-349.
[60] Mitchell, D. (1996) GC content and genome length in Chargaff compliant genomes. Biochemical and Biophysical Research communications, 353, 207-210 doi:10.1016/j.bbrc.2006.12.008.
[61] Mitchell, D. and Bridge, R. (1996) A test of Chargaff’s second rule. Biochemical and Biophysical Research communications, 340, 90-94, doi:10.1016/j.bbrc.2005.11.160
[62] Stern, L., Allison, L., Coppel, R.L. and Dix, T.I. (2001) Discovering patterns in Plasmodium falciparum genomic DNA. Mol. Biochemical Parasitology, 112, 71-77.
[63] Kanaya, S., Kinouchi, M., Abe, T., Kudo, Y., Yamada, Y., Nishi, T., Mori, H. and Ikemura, T. (2001) Analysis of codon usage diversity of bacterial genes with a self-organizing map (SOM): characterization of horizontally transferred genes with emphasisi on the E. coli O157 genome. Gene, 276, 89-99.
[64] Baisnee, P-F., Hampson, S. and Baldi, P. (2002) Why are complementary DNA strands symmetric? Bioinformatics, 18, 1021-1033.
[65] Chen, L. and Zhao, H. (2005) Negative correlation between compositional symmetries and local recombination rates. Bioinformatics, 21, 3951-3958.
[66] Albrecht-Buehler, G. (2006) Asymptotically increasing compliance of genomes with Chargaff’s second parity rules through inversions and inverted transpositions. Proceedings of National Academy of Science, USA, 103, 17828-17833.
[67] Knoch, T.A., Goker, M., Lohner, R., Abuseiris, A. and Grosveld, F.G. (2009) Fine-structures multi-scaling long-range correlations in completely sequenced genomes-features, origin, and classification. European Biophysical Journal, 38, 757-779.
[68] Chor, B., Horn, D., Goldman, N., Levy, Y. and Massingham, T. (2009) Genomic DNA k-mer spectra: models and modalities. Genome Biology, 10, R.108.
[69] Mattick, J. S. (2004) RNA regulation: a new genetics? Nature Reviews Genetics, 5, 316-323.
[70] Haber, J.E. and Leung, W.Y. (1996) Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proceedings of National Academy of Science, USA, 93, 13949-13954.
[71] Rowley, J.D. (2001) Chromosomal translocations; dangerous liaisons revisited. Nature Reviews Cancer, 1, 245-250.
[72] Meaburn, K.J., Misteli, T. and Soutoglou, E. (2007) Spatial genome organization in the formation of chromosomal translocations. Seminars in Cancer Biology, 17, 80-90.
[73] Webb, C.F., Das, C., Eneff, K. and Tucker, P.W. (1991) Identification of a matrix-associated region 5' of an immunoglobulin heavy chain variable region gene. Molecular and Cellular Biology, 11, 5206-5211.
[74] West, A.G., Gaszner, M. and Felsenfeld, G. (2002) Insulators: many functions, many mechanisms. Genes and Development, 16, 271-288.
[75] Levine, M. and Tjian, R. (2003) Transcription regulation and animal diversity. Nature, 424, 147-151.
[76] Lai, E.C., Roegiers, F., Qin, X., Jan, Y.N. and Rubin, G.M. (2005) The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development, 132, 2319-2332.
[77] Martens, J.A., Wu, P.Y. and Winston, F. (2005) Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes and Development, 19, 2695-2704.
[78] Taft, R.J., Pheasant, M. and Mattick, J.S. (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays. 29, 288-299.
[79] Sollner-Webb, B. and Tower, J. (1986) Transcription of cloned eukaryotic ribosomal RNA genes. Annual Review of Biochemistry, 55, 801-830.
[80] Worton, R.G., Sutherland, J., Sylvester, J.E., Willard, H.F., Bodrug, S., Dube, I., Duff, C., Kean, V., Ray, P.N. and Schmickel, R.D. (1988) Human ribosomal RNA genes: Orientation of the tandem array and conservation of the 5’-end. Science, 239, 64-67.
[81] Kataoka, T., Powers, S., McGill, C., Fasano, O., Strathern, J., Broach, J. and Wigler, M. (1984) Genetic analysis of the yeast RAS1 and RAS2 genes. Cell, 37, 437-445.
[82] Mabuchi, T., Ichimura, Y., Takeda, M. and Douglas, M.G. (2000) ASC1/RAS2 suppresses the growth defect on glycerol caused by the atp1-2 mutation in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry 275: 10492-10497.
[83] Korenberg, J.R. and Engels, W.R. (1978) Base ratio, DNA content, and quinacrine-brightness of human chromosomes. Proceedings of National Academy of Science, USA, 75, 3382-3386.
[84] Wada, A., Suyama, A. and Hanai, R. (1991) Phenomenological theory of GC/AT pressure on DNA base composition. Journal of Molecular Evolution, 32, 374-378.
[85] Morton, B.R. (1995) Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions. Proceedings of National Academy of Science, USA, 92, 9717-9721.
[86] MIPS data. (2010), The yeast genome project (http://www.mips.biochem.mpg.de/).
[87] Grantham, R. (1980) Working of the genetic code. Trends in Biochemical Sciences (TIBS), 5, 327-331.
[88] Kanazawa, H., Kayano, T., Kiyasu, T. and Futai, M. (1982) Coupling factor F1-ATPase with defective subunit from a mutant of Escherichia coli. Biochemical and Biophysical Research Communication, 105, 1257-1264.
[89] Horii, T., Ogawa, T. and Ogawa, H. Organization of the recA gene of Escherichia coli. Proceedings of National Academy of Science, USA, 77, 313-317.
[90] Kaput, J. Goltz, S. and Blobel, G. (1982) Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. Journal of Biological Chemistry, 257, 15054-15058
[91] Hase, T., Muller, U., Riezman, H. and Schatz, G. (1984) A 70-kd protein of the yeast mitochondrial outer membrane is targeted and anchored via its extreme amino terminus. EMBO Journal, 3, 3157-3164.
[92] Parisi, G. and Frisch, U. (1985) Turbulence and predictability of geophysical flows and climatic dynamics. ed. Ghil, N., Benzi, R., and Parisi, G., (North Holland, Amsterdam), pp.84-87.
[93] Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I. and Shraiman, B. (1986) Fractal measure and their singularities: the characterization of strange sets. Physical Review A., 33, 1141-1151.
[94] Peng, C.K., Buldrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, M., Simons, M. and Stanley, H.E. (1992) Long-range correlations in nucleotide sequences. Nature, 356, 168-170.
[95] Voss, R.F. (1992) Evolution of long-range fractal correlation and 1/f noise in DNA base sequences. Physical Review Letters, 68, 3805-3809.
[96] Bains, W. (1993) Local self-similarity of sequence in mammalian nuclear DNA is modulated by a 180 bp periodicity. Journal of Theoretical Biology, 161, 137-43.
[97] Weinberger, E.D. and Stadler, P.F. (1993) Why some fitness landscapes are fractal. Journal of Theoretical Biology, 163, 255-275.
[98] Crick, F.H.C. (1971) General model for the chromosomes of higher organisms. Nature, 234, 25-27.
[99] Crick, F.H.C, Wang, J.C. and Bauer, W.R. (1979) Is DNA really a double helix? Journal of Molecular Biology, 129, 449-461.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.