Share This Article:

Application of Polymeric Membrane in CO2 Capture from Post Combustion

Abstract Full-Text HTML XML Download Download as PDF (Size:708KB) PP. 336-341
DOI: 10.4236/aces.2012.23039    5,464 Downloads   10,062 Views   Citations

ABSTRACT

CO2 capture from post combustion does not need significant alteration of the current power generation facilities and is therefore of more interests to the research and industrial circles. Polymeric membrane separations, which are based mainly on physical phenomena, are easy for operation and to scale up. The details and future research trends are covered in this most updated review, which serve as an excellent technique reference for the research circle and technology evaluation for the related industrial circle.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Wang and X. Han, "Application of Polymeric Membrane in CO2 Capture from Post Combustion," Advances in Chemical Engineering and Science, Vol. 2 No. 3, 2012, pp. 336-341. doi: 10.4236/aces.2012.23039.

References

[1] IEA, “CO2 Emissions from Fuel Combustion 1997-2001,” IEA/OECD, Paris, 2003.
[2] R. Thiruvenkatachari, S. Su, H. An and X. X. Yu, “Post Combustion CO2 Capture by Carbon Fibre Monolithic Adsorbents,” Progress in Energy and Combustion Science, Vol. 35, No. 5, 2009, pp. 438-455. doi:10.1016/j.pecs.2009.05.003
[3] J.-L. Li and B.-H. Chen, “Review of CO2 Absorption Using Chemical Solvents in Hollow Fiber Membrane Contactors,” Separation and Purification Technology, Vol. 41, No. 2, 2005, pp. 109-122. doi:10.1016/j.seppur.2004.09.008
[4] D. R. Paul and Y. P. Yampol’skii, “Polymeric Gas Separation Membranes”, CRC Press, Boca Raton, 1994.
[5] C. A. Hendricks, K. Blok and W. C. Turkenburg, “The Recovery of Carbon Dioxide from Power Plants,” In: P. A. Okken, R. J. Swart and S. Zwerver, Eds., Climate and Energy, Kluwer Academic Publishers, Dordrecht, 1989.
[6] J. P. Van Der Sluijs, C. A. Hendricks and K. Blok, “Feasibility of Polymer Membranes for Carbon Dioxide Recovery from Flue Gases,” Energy Conversion and Management, Vol. 33, No. 5-8, 1992, pp. 429-436. doi:10.1016/0196-8904(92)90040-4
[7] T. C. Merkel, H. Q. Lin, X. T. Wei and R. Baker, “Power Plant Post-Combustion Carbon Dioxide Capture: An Opportunity for Membranes,” Journal of Membrane Science, Vol. 359, No. 1-2, 2010, pp. 126-139. doi:10.1016/j.memsci.2009.10.041
[8] Gh. Bakeri, A. F. Ismail, M. Shariaty-Niassar and T. Matsuura, “Effect of Polymer Concentration on the Structure and Performance of Polyetherimide Hollow Fiber Membranes,” Journal of Membrane Science, Vol. 363, No. 1-2, 2010, pp. 103-111. doi:10.1016/j.memsci.2010.07.018
[9] E. Favre, “Membrane Processes and Post Combustion Carbon Dioxide Capture: Challenges and Prospects,” Chemical Engineering Journal, Vol. 171, No. 3, 2011, pp. 782-793. doi:10.1016/j.cej.2011.01.010
[10] R. Khalilpour, A. Abbas, Z. P. Lai and I. Pinnau, “Modelling and Parametric Analysis of Hollow Fiber Membrane System for Carbon Capture from Multicomponent Flue Gas,” Processing System Engineering, Vol. 58, No. 5, 2011, pp. 1550-1561. doi:10.1002/aic.12699
[11] A. Brunetti, F. Scura, G. Barbieri and E. Drioli, “Membrane Technologies for CO2 Separation,” Journal of Membrane Science, Vol. 359, No. 1-2, 2010, pp. 115-125. doi:10.1016/j.memsci.2009.11.040
[12] M. T. Ho, G. W. Allison and D. E. Wiley, “Reducing the Cost of CO2 from Flue Gas Using Pressure Swing Adsorption,” Industrial Engineering Chemical Research, Vol. 47, No. 5, 2008, pp. 1562-1568.
[13] M. T. Ho, G. W. Allison and D. E. Wiley, “Reducing the Cost of CO2 from Flue Gas Using Pressure Swing Adsorption,” Industrial Engineering Chemical Research, Vol. 47, No. 5, 2008, pp. 4883-4890.
[14] J. Kotowicz, T. Chmielniak and K. Janusz-Szymanska, “The Influence of Membrane CO2 Separation on the Efficiency of a Coal-Fired Power Plant,” Energy, Vol. 35, No. 2, 2010, pp. 841-850.
[15] L. Zhao, E. Riensche, R. Menzer, L. Blum and D. Stolten, “A Parametric Study of CO2/N 2 Gas Separation Membrane Process for Post-Combustion Capture,” Journal of Membrane Science, Vol. 325, No. 1, 2008, pp. 284-294.
[16] K. Okabe, H. Mano and Y. Fujioka, “Separation and Recovery of Carbon Dioxide by a Membrane Flash Process,” International Journal of Greenhouse Gas Control, Vol. 1, No. 1, 2009, pp. 1281-1288. doi:10.1016/j.ijggc.2008.06.004
[17] R. Wang, H. Y. Zhang, P. H. M. Feron and D. T. Liang, “Influence of Membrane Wetting on CO2 Capture in Microporous Hollow Fiber Membrane Contactors,” Separation and Purification Technology, Vol. 46, No. 1-2, 2005, pp. 33-40. doi:10.1016/j.seppur.2005.04.007
[18] J. Zou and W. S. W. Ho, “CO2-Selective Polymeric Membranes Containing Amines in Crosslinked Poly(Vinyl Alcohol),” Journal of Membrane Science, Vol. 286, No. 1-2, 2006, pp. 310-321. doi:10.1016/j.memsci.2006.10.013
[19] X. Z. He and M.-B. Hagg, “Hollow Fiber Carbon Membranes: Investigations for CO2 Capture,” Journal of Membrane Science, Vol. 378, No. 1-2, 2010, pp. 1-9. doi:10.1016/j.memsci.2010.10.070
[20] H.-Y. Zhang, R. Wang, D. T. Liang and J. H. Tay, “Modeling and Experimental Study of CO2 Absorption in Ahollow Fiber Membrane Contactor,” Journal of Membrane Science, Vol. 279, No. 1-2, 2006, pp. 301-310.
[21] A. Gabelman and S.-T. Hwang, “Hollow Fiber Membrane Contactors,” Journal of Membrane Science, Vol. 159, No. 1-2, 1999, pp. 61-106. doi:10.1016/S0376-7388(99)00040-X
[22] M. Mavroudi, S. P. Kaldis and G. P. Sakellaropoulos, “Reduction of CO2 Emissions by a Membrane Contacting Process,” Fuel, Vol. 82, No. 15-17, 2003, pp. 2153-2159.
[23] D. Shekhawat, D. R. Luebke and H. W. Pennline, “A Review of Carbon Dioxide Selective Membranes—A Topical Report,” National Energy Technology Laboratory, United States Department of Energy, 2003.
[24] R. Bounaceur, N. Lape, D. Roizard, C. Vallieres and E. Favre, “Membrane Processes for Post-Combustion Carbon Dioxidecapture: A Parametric Study,” Energy, Vol. 31, No. 14, 2006, pp. 2556-2570. doi:10.1016/j.energy.2005.10.038
[25] E. Favre, “Carbon Dioxide Recovery from Post-Combustion Processes: Can Gas Permeation Membranes Compete with Absorption?” Journal of Membrane Science, Vol. 294, No. 1-2, 2007, pp. 50-59. doi:10.1016/j.memsci.2007.02.007
[26] C. E. Powell and G. G. Qiao, “Polymeric CO2/N2 Gas Separation Membrane for the Capture of Carbon Dioxide from Power Plant Flue Gases,” Journal of Membrane Science, Vol. 279, No. 1-2, 2006, pp. 1-49. doi:10.1016/j.memsci.2005.12.062
[27] S.-P. Yan, M.-X. Fang, W.-F. Zhang, S.-Y. Wang, Z.-K. Xu, Z.-Y. Luo and K.-F. Cen, “Experimental Study on the Separation of CO2 from Flue Gas Using Hollow Fiber Membrane Contactors without Wetting,” Fuel Processing Technology, Vol. 88, No. 5, 2007, pp. 501-511.
[28] A. Mansourizadeh and A. F. Ismail, “A Developed Asymmetric PVDF Hollow Fiber Membrane Structure for CO2 Absorption,” International Journal of Greenhouse Gas Control, Vol. 5, No. 2, 2010, pp. 374-380. doi:10.1016/j.ijggc.2010.09.007
[29] U. E. Aronu, H. F. Svendsen and K. AndersHoff, “Investigation of Amine Amino Acid Salts for Carbon Dioxide Absorption,” International Journal of Greenhouse Gas Control, Vol. 4, No. 5, 2010, pp. 771-775.
[30] J. Kittel, R. Idem, D. Gelowitz, P. Tontiwachwuthikul, G. Parrain and A. Bonneau, “Corrosion in MEA Units for CO2 Capture: Pilot Plant Studies,” Energy Procedia, Vol. 1, No. 1, 2009, pp. 791-797. doi:10.1016/j.egypro.2009.01.105
[31] A. F. Portugal, J. M. Sousa, F. D. Magalhaes and A. Mendes, “Solubility of Carbon Dioxide in Aqueous Solutions of Amino Acid Salts,” Chemical Engineering Science, Vol. 64, No. 9, 2009, pp. 1993-2002. doi:10.1016/j.ces.2009.01.036
[32] H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, “Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes,” Chemical Engineering Science, Vol. 48, No. 11, 1993, pp. 2093-2102. doi:10.1016/0009-2509(93)80084-4
[33] J. G. Lu, Y. F. Zheng and M. D. Cheng, “Wetting Mechanism in Mass Transfer Process of Hydrophobic Membrane Gas Absorption,” Journal of Membrane Science, Vol. 308, No. 1-2, 2008, pp. 180-190. doi:10.1016/j.memsci.2007.09.051
[34] A. Mansourizadeh and A. F. Ismail, “Effect of Additives on the Structure and Performance of Polysulfone Hollow Fiber Membranes for CO2 Absorption,” Journal of Membrane Science, Vol. 348, No. 1-2, 2010, pp. 260-267. doi:10.1016/j.memsci.2009.11.010
[35] Y. X. Lv, X. H.Yu, S.-T. Tu, J. Y. Yan and E. Dahlquist, “Wetting of Polypropylene Hollow Fiber Membrane Contactors,” Journal of Membrane Science, Vol. 362, No. 1-2, 2010, pp. 444-452. doi:10.1016/j.memsci.2010.06.067
[36] S. M. Sedeghi, J. Brisson, D. Rodrigue and M. C. Iliuta, “Chemical Alteration of LDPE Hollow Fibers Exposed to Monoethanolamine Solutions Used as Absorbent for CO2 Capture Process,” Separation and Purification Technology, Vol. 80, No. 2, 2011, pp. 338-344. doi:10.1016/j.seppur.2011.05.017
[37] F. Porcheron and S. Drozdz, “Hollow Fiber Membrane Contactor Transient Experiments for the Characterization of Gas/Liquid Thermodynamics and Mass Transferproperties,” Chemical Engineering Science, Vol. 64, No. 2, 2009, pp. 265-275. doi:10.1016/j.ces.2008.09.035
[38] M. H. El-Naas, M. Al-Marzouqi, S. A. Marzouk and N. Abdullatif, “Evaluation of the Removal of CO2 Using Membrane Contactors: MembraneWettability,” Journal of Membrane Science, Vol. 350, No. 1-2, 2010, pp. 410-416. doi:10.1016/j.memsci.2010.01.018
[39] M. B. Hagg, T.-J. Kim and B. Li, “Membrane for Separating CO2 and Process for the Production Thereof,” WO Patent No. 2,005,089,907, 2005.
[40] L. Y. Deng, T.-J. Kim and M.-B. Hagg, “Facilitated Transport of CO2 in Novel PVAm/PVA Blend Membrane,” Journal of Membrane Science, Vol. 340, No. 1-2, pp. 154-163.
[41] A. Hussain and M.-B. Hagg, “A Feasibility Study of CO2 Capture from Flue Gas by a Facilitated Transport Membrane,” Journal of Membrane ScienceVolume, Vol. 359, No. 1-2, 2010, pp. 140-148.
[42] S. Shishatskiy, J. R. Pauls, S. P. Nunes and K.-V. Peinemann, “Quaternary Ammonium Membrane Materials for CO2 Separation,” Journal of Membrane Science, Vol. 359, No. 1-2, 2010, pp. 44-53. doi:10.1016/j.memsci.2009.09.006

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.