Share This Article:

Ratio of dielectric strength of structural and secondary relaxation close to the glass transition for PPGE and DGEBA

Abstract Full-Text HTML Download Download as PDF (Size:681KB) PP. 492-498
DOI: 10.4236/ns.2012.47066    3,328 Downloads   5,625 Views  

ABSTRACT

Here, dielectric spectroscopy is used in the fre- quency range from 10-2 Hz up to 107 Hz and we found dynamics of the primary α-and intermolecular Johari–Goldstein β-processes are strongly correlated in diglycidyl-ether of bis-phenol-A and poly phenyl glycidyl-ether (PPGE) over a wide temperature from 193 to 345 K and pressure P range from 0.1 to 600 MPa. In contrast with the widespread opinion of statistical independence of these processes the α-β mutual dependence is quantitatively confirmed in [1] analysing the temperature and pressure behavior of the α-and (JG) β-processes the investigation of the ratio of dielectric strength of two processes close to Tg evidence that the importance of secondary dy namics in relaxing external electric stresses increase in glass formers at high pressures with respect to that of the structural relaxation. We suggest that the thermal agitation, acting above Tg is at the basis of the observed result.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sharifi, S. and bahreini, N. (2012) Ratio of dielectric strength of structural and secondary relaxation close to the glass transition for PPGE and DGEBA. Natural Science, 4, 492-498. doi: 10.4236/ns.2012.47066.

References

[1] Kessairi, K., Capaccioli, S., Prevosto, D., Lucchesi, M., Sharifi, S. and Rolla, P.A. (2008). Interdependence of primary and Johari-Goldstein secondary relaxations in glass-forming systems. Journal of Chemical Physics, 112, 4470-4473. doi:10.1021/jp800764w
[2] Prevosto, D., Sharifi, S., Capaccioli, S., Rolla, P., Hensel- Bielowka, S. and Paluch, M. (2007) New experimental evidences about secondary processes in phenylphthalein- dimethylether and 1,1’-bis(p-methoxyphenyl)-cyclohexane. Journal of Chemical Physics, 127, 114507. doi:10.1063/1.2771169
[3] Struik, L.C.E. (1978) Physical aging in amorphous polymers and other materials. Elsevier, Amsterdam.
[4] Prevosto, D., Capaccioli, S., Lucchesi, M., Rolla, P.A. and Ngai, K.L. (2004) Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework. Journal of Chemical Physics, 120, 4808. doi:10.1063/1.1646375
[5] Johari, G.P. (1982) Effect of annealing on the secondary relaxations in glasses. Journal of Chemical Physics, 77, 4619. doi:10.1063/1.444414
[6] Etienne, S., David, L., Duval, E., Mermet, A., Wypych, A. and Simeoni, G. (2006) Physical aging of amorphous matter: Down to the nanometric scale. Solid State Phenomena, 115, 99. doi:10.4028/www.scientific.net/SSP.115.99
[7] Wypych, A., Duval, E., Boiteux, G., Ulanski, J., David, L. and Mermet, A. (2005) Effect of physical aging on nano- and macroscopic properties of poly(methyl methacrylate) glass. Polymer, 46, 12523. doi:10.1016/j.polymer.2005.10.116
[8] Bree, H.W., Heijboer, J., Struik, L.C.E. and Tak, A.G.M. (1974) The effect of densification on the mechanical properties of amorphous glassy polymers. Journal of Polymer Science: Polymer Physics Edition, 12, 1857. doi:10.1002/pol.1974.180120909
[9] Kovacs, A.J., Stratton, R.A. and Ferry, J.D. (1963) Dynamic mechanical properties of poly(vinyl acetate) in shear in the glass transition temperature range. Journal of Chemical Physics, 67, 152-161.
[10] McKinney, J.E. and Goldstein, M. (1974) PVT relationships for liquid and glassy poly(vinyl acetate). Journal of Research of the National Bureau of Standards, Section A, 78A, 331.
[11] Olsen, N.B., Christensen, T. and Dyre, J.C. (2000) β relaxation of nonpolymeric liquids close to the glass transition. Physical Review E, 62, 4435. doi:10.1103/PhysRevE.62.4435
[12] Reiser, A., Kasper, G. and Hunklinger, S. (2004) Effect of pressure on the secondary relaxation in a simple glass former. Physical Review Letters, 92, 125701.
[13] Paluch, M., Pawlus, S., Hensel-Bielowka, S., Kaminski, K., Psurek, T., Rzoska, S.J., Ziolo, J. and Roland, C.M. (2005) Effect of glass structure on the dynamics of the secondary relaxation in diisobutyl and diisoctyl phthalates. Physical Review B, 72, 224205. doi:10.1103/PhysRevB.72.224205
[14] Prevosto, D., Capaccioli, S., Lucchesi, M., Rolla, P.A., Paluch, M. and Pawlus, S. (2006) Effect of thermodynamic history on secondary relaxation in glassy phenol- phthalein-dimethyl-ether. Physical Review B, 73, 104205. doi:10.1103/PhysRevB.73.104205
[15] McCrum, N.G., Read, B.E. and Williams, G. (1967) Anelastic and dielectric effects in polymeric solids. Wiley, New York.
[16] Johari, G.P. and Goldstein, M. (1970) Viscous liquids and the glass transition. II. Secondary Relaxations in glasses of rigid molecules. Journal of Chemical Physics, 53, 2372. doi:10.1063/1.1674335
[17] Ngai, K.L. (2003) An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. Journal of Physics: Condensed Matter, 15, S1107. doi:10.1088/0953-8984/15/11/332
[18] Ngai, K.L. and Paluch, M. (2004) Classification of secondary relaxation in glass-formers based on dynamic properties. Journal of Chemical Physics, 120, 857. doi:10.1063/1.1630295
[19] Sharifi, S. (2011) Temperature dependence of the activation volume of secondary relaxation in glass formers. ISRN Materials Science, 460751.
[20] Sharifi, S. and Asl, J.M. (2011) Secondary relaxation inside the glass. ISRN Materials Science, 201, 764874.
[21] Sharifi, S. (2011) Activation volume of secondary relaxation. Materials Sciences and Applications, 2, 624-628. doi:10.4236/msa.2011.26084
[22] Ngai, K.L. (2003) An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. Journal of Physics: Condensed Matter, 15, S1107. doi:10.1088/0953-8984/15/11/332
[23] Prevosto, D., Capaccioli, S., Sharifi, S., Kessairi, K. Lucchesi, M. and Rolla, P.A. (2007) Secondary dynamics in glass formers: Relation with the structural dynamics and the glass transition. Journal of Non-Crystalline Solids, 353, 4278-4282. doi:10.1016/j.jnoncrysol.2007.03.045
[24] Paluch, M., Pawlus, S., Hensel-Bielowka, S., Kaminska, E., Prevosto, D., Capaccioli, S., Rolla, P.A. and Ngai, K.L. (2005) Two secondary modes in decahydroisoquinoline: Which one is the true Johari Goldstein process? Journal of Chemical Physics, 122, 234506. doi:10.1063/1.1931669
[25] Sharifi, S., Prevosto, D., Capaccioli, S., Lucchesi, M. and Rolla, P. (2011) Temperature and pressure dependence of secondary process in an epoxy system. Journal of Chemical Physics, 134, 044510. doi:10.1063/1.3518972
[26] Paluch, M., Casalini, R. and Roland, C.M. (2002) Relative contributions of thermal energy and free volume to the temperature dependence of structural relaxation in fragile glass-forming liquids. Physical Review B, 66, 092202. doi:10.1103/PhysRevB.66.092202
[27] Ngai, K.L. and Capaccioli, S. (2004) Relation between the activation energy of the Johari-Goldstein β relaxation and Tg of glass formers. Physical Review E, 69, 031501. doi:10.1103/PhysRevE.69.031501
[28] Paluch, M., Patkowski, A. and Fisher, E.W. (2000) Temperature and pressure scaling of the α relaxation process in fragile glass formers: A dynamic light scattering study. Physical Review Letters, 85, 2140. doi:10.1103/PhysRevLett.85.2140
[29] Paluch, M., Gapinski, J., Patkowski, A. and Fischer, E.W. (2001) Does fragility depend on pressure? A dynamic light scattering study of a fragile glass-former. Journal of Chemical Physics, 114, 8048. doi:10.1063/1.1362293
[30] Comez, L., Fioretto, D., Palmieri, L., Verdini, L., Rolla, P.A., Gapinski, T., Pakula, A., Patkowski, W.S. and Fischer, E.W. (1999) Light-scattering study of a supercooled epoxy resin. Physical Review E, 60, 3086. doi:10.1103/PhysRevE.60.3086
[31] Paluch, M., Roland, C.M., Gapinski, J. and Patkowski, A. (2003) Pressure and temperature dependence of structural relaxation in diglycidylether of bisphenol A. The Journal of Chemical Physics, 118, 3177. doi:10.1063/1.1538597

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.