Electrochemical Degradation of Chlorsulfuron Herbicide from Water Solution Using Ti/IrO2-Pt Anode

Abstract

Chlorsulfuron (ChS) which is a nonbiodegradable herbicide was effectively removed using an electrochemical method at the Ti/IrO2-Pt anode. The influences of current density, initial ChS concentration, initial solution pH and different NaCl dosages on electrochemical degradation of ChS were investigated. HOCl formed during electrolysis and quickly generated .OH radicals would likely play an important role in the electrochemical degradation of ChS with the presence of NaCl. At current density of 20 mA?cm–2, ChS concentration decreased from 1 mg.L–1 to 0 mg.L–1 after 10 min electrolysis with 0.2 g?L–1 NaCl dosage. It was found that the ChS removal rate increased with increasing current density and the ChS degradation was similar at different initial pH values, which means that Ti/IrO2-Pt anode can be used in a wide pH range. The electrochemical performance of Ti/IrO2-Pt anode for degradation of ChS will not decrease after serviced for a long time. These results reveal that an electrochemical approach would be a novel treatment method for effective and rapid degradation of ChS herbicide from aqueous solution.

Share and Cite:

X. Guo, Y. Yang, C. Feng, M. Li, R. Chen, J. Li and Z. Zhang, "Electrochemical Degradation of Chlorsulfuron Herbicide from Water Solution Using Ti/IrO2-Pt Anode," Open Journal of Applied Sciences, Vol. 2 No. 2, 2012, pp. 78-85. doi: 10.4236/ojapps.2012.22010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. S. Martínez and C. L. Bahena, “Chlorbromuron Urea HerbicideRemoval by Electro-Fenton Reaction in Aqueous Effluents,” Water Research, Vol. 43, No. 1, 2009, pp. 33-40. doi:10.1016/j.watres.2008.09.036
[2] T. Sarigül, R. ?nam and H. Y. Aboul-Enein, “ElectroOxidation of Herbicide Halosulfuron Methyl on Glassy Carbon Electrode and Applications,” Talanta, Vol. 82, No. 5, 2010, pp. 1814-1819. doi:10.1016/j.talanta.2010.07.085
[3] F. Fresno, C. Guillard, J. Coronado, J. Chovelon, D. Tudela, J. Soria and J. Herrmann, “Photocatalytic Degradation of a Sulfonylurea Herbicide over Pure and TinDoped TiO2 Photocatalysts,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 173, No. 1, 2005, pp. 13-20.doi:10.1016/j.jphotochem.2004.12.028
[4] W. Baran, E. Adamek, A. Sobczak and A. Makowski, “Photocatalytic Degradation of Sulfa Drugs with TiO2, Fe Salts and TiO2/FeCl3 in Aquatic Environment-Kinetics and Degradation Pathway,” Applied Catalysis B: Environmental, Vol. 90, No. 3-4, 2009, pp. 516-525. doi:10.1016/j.apcatb.2009.04.014
[5] I. Konstantinou, “Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways,” Applied Catalysis B: Environmental, Vol. 42, No. 4, 2003, pp. 319-335. doi:10.1016/S0926-3373(02)00266-7
[6] J.M.F. Martins, N. Chevre, L. Spack, J. Tarradellas and A. Mermoud, “Degradation in Soil and Water and Ecotoxicity of Rimsulfuron and Its Metabolites,” Chemosphere, Vol. 45, No. 4-5, 2001, pp. 515-522. doi:10.1016/S0045-6535(01)00040-6
[7] W. A. Battaglin, E. T. Furlong, M. R. Burkhardt and C. J. Peter, “Occurrence of Sulfonylurea, Sulfonamide, Imidazolinone, and Other Herbicides in Rivers, Reservoirs and Ground Water in the Midwestern United States, 1998,” The Science of The Total Environment, Vol. 248, No. 2-3, 2000, pp. 123-133. doi:10.1016/S0048-9697(99)00536-7
[8] G. Boschin, A. D’Agostina, C. Antonioni, D. Locati and A. Arnoldi, “Hydrolytic Degradation of Azimsulfuron, a Sulfonylurea Herbicide,” Chemosphere, Vol. 68, No. 7, 2007, pp. 1312-1317. doi:10.1016/j.chemosphere.2007.01.036
[9] G. M. Fahl, L. Kreft, R. Altenburger, M. Faust, W. Boedeker and L. H. Grimme, “pH-Dependent Sorption, Bioconcentration and Algal Toxicity of Sulfonylurea Herbicides,” Aquatic Toxicology, Vol. 31, No. 2, 1995, pp. 175-187. doi:10.1016/0166-445X(94)00067-Z
[10] M. Sleiman, P. Conchon, C. Ferronato and J. Chovelon, “Iodosulfuron Degradation by TiO2 Photocatalysis: Kinetic and reactional Pathway Investigations,” Applied Catalysis B: Environmental, Vol. 71, No. 3-4, 2007, pp. 279290. doi:10.1016/j.apcatb.2006.09.012
[11] E. Vulliet, C. Emmelin, J.-M. Chovelon, C. Guillard and J.-M. Herrmann, “Photocatalytic Degradation of Sulfonylurea Herbicides in Aqueous TiO2,” Applied Catalysis B: Environmental, Vol. 38, No. 2, 2002, pp. 127-137. doi:10.1016/S0926-3373(02)00035-8
[12] E. Vulliet, “Factors Influencing the Photocatalytic Degradation of Sulfonylurea Herbicides by TiO2 Aqueous Suspension,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 159, No. 1, 2003, pp. 71-79. doi:10.1016/S1010-6030(03)00108-4
[13] S. Rafqah, P. Wong-Wah-Chung, A. Aamili and M. Sarakha, “Degradation of Metsulfuron Methyl by Heterogeneous Photocatalysis on TiO2 in Aqueous Suspensions: Kinetic and Analytical Studies,” Journal of Molecular Catalysis A: Chemical, Vol. 237, No. 1-2, 2005, pp. 5059. doi:10.1016/j.molcata.2005.03.044
[14] S. Ahmed, M. G. Rasul, R. Brown and M. A. Hashib, “Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review,” Journal of Environmental Management, Vol. 92, No. 3, 2011, pp. 311330.doi:10.1016/j.jenvman.2010.08.028
[15] B.-X. Zhao, X.-Z. Li and P. Wang, “Degradation of 2,4Dichlorophenol with a Novel TiO2/Ti-Fe-Graphite Felt Photoelectrocatalytic Oxidation Process,” Journal of Environmental Sciences, Vol. 19, No. 8, 2007, pp. 10201024. doi:10.1016/S1001-0742(07)60165-X
[16] Y. S. Sohn, Y. R. Smith, M. Misra and V. Subramanian, “Electrochemically Assisted Photocatalytic Degradation of Methyl Orange Using Anodized Titanium Dioxide Nanotubes,” Applied Catalysis B: Environmental, Vol. 84, No. 3-4, 2008, pp. 372-378. doi:10.1016/j.apcatb.2008.04.021
[17] M. Li, C. Feng, Z. Zhang and N. Sugiura, “Efficient Electrochemical Reduction of Nitrate to Nitrogen Using Ti/I rO2-Pt Anode and Different Cathodes,” Electrochimica Acta, Vol. 54, No. 20, 2009, pp. 4600-4606. doi:10.1016/j.electacta.2009.03.064
[18] J. Radjenovic, A. Bagastyo, R. A. Rozendal, Y. Mu, J. Keller and K. Rabaey, “Electrochemical Oxidation of Trace Organic Contaminants in Reverse Osmosis Concentrate Using RuO2/IrO2-Coated Titanium Anodes,” Water Research, Vol. 45, No. 4, 2011, pp. 1579-1586. doi:10.1016/j.watres.2010.11.035
[19] D. Reyter, D. Bélanger and L. Roué, “Nitrate Removal by a Paired Electrolysis on Copper and Ti/IrO2 Coupled Electrodes—Influence of the Anode/Cathode Surface Area Ratio,” Water Research, Vol. 44, No. 6, 2010, pp. 19181926.doi:10.1016/j.watres.2009.11.037
[20] A. Kapa?ka, A. Katsaounis, N.-L. Michels, A. Leonidova, S. Souentie, C. Comninellis and K.M. Udert, “Ammonia Oxidation to Nitrogen Mediated by Electrogenerated Active Chlorine on Ti/PtOx-IrO2,” Electrochemistry Communications, Vol. 12, No. 9, 2010, pp. 1203-1205. doi:10.1016/j.elecom.2010.06.019
[21] M. Makgae, C. Theron, W. Przybylowicz and A. Crouch, “Preparation and Surface Characterization of SnO2-RuO2IrO2 thin Films as Electrode Material for the Oxidation of Phenol,” Materials Chemistry and Physics, Vol. 92, No. 2-3, 2005, pp. 559-564. doi:10.1016/j.matchemphys.2005.02.022
[22] Y. Liu, L. Li and R. Goel, “Kinetic Study of Electrolytic Ammonia Removal Using Ti/IrO2 as Anode under Different Experimental Conditions,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 959-965. doi:10.1016/j.jhazmat.2009.01.082
[23] E. Turro, A. Giannis, R. Cossu, E. Gidarakos, D. Mantzavinos and A. Katsaounis, “Electrochemical Oxidation of Stabilized Landfill Leachate on DSA Electrodes,” Journal Of Hazardous Materials, Vol. 190, No. 1-3, 2011, pp. 460-465. doi:10.1016/j.jhazmat.2011.03.085
[24] Q. Xue, M. Li, K. Shimizu, M. Utsumi, Z. Zhang, C. Feng, Y. Gao and N. Sugiura, “Electrochemical Degradation of Geosmin Using Electrode of Ti/IrO2-Pt,” Desalination, Vol. 265, No. 1-3, 2011, pp. 135-139.
[25] M. Li, C. Feng, W. Hu, Z. Zhang and N. Sugiura, “Electrochemical Degradation of Phenol Using Electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt,” Journal of Hazardous Materials, Vol. 162, No. 1, 2009, pp. 455-462. doi:10.1016/j.desal.2010.07.043
[26] F. Zaviska, P. Drogui, J.-F. Blais, G. Mercier and P. Lafrance, “Experimental Design Methodology Applied to Electrochemical Oxidation of the Herbicide Atrazine Using Ti/IrO2 and Ti/SnO2 Circular Anode Electrodes,” Journal Of Hazardous Materials, Vol. 185, No. 2-3, 2011, pp. 1499-1507.doi:10.1016/j.jhazmat.2010.10.075
[27] O. Simond and C. Comninellis, “Anodic Oxidation of Organics on Ti/IrO2 Anodes Using Nafion? as Electrolyte,” Electrochimica Acta, Vol. 42, No. 13-14, 1997, pp. 20132018. doi:10.1016/S0013-4686(97)85476-X
[28] X. Wang, J. Hu, J. Zhang and C. Cao, “Characterization of Surface Fouling of Ti/IrO2 Electrodes in 4-Chlorophenol Aqueous Solutions by Electrochemical Impedance Spectroscopy,” Electrochimica Acta, Vol. 53, No. 8, 2008, pp. 3386-3394. doi:10.1016/j.electacta.2007.11.070
[29] E. Chatzisymeon, A. Dimou, D. Mantzavinos and A. Katsaounis, “Electrochemical Oxidation of Model Compounds and Olive Mill Wastewater over DSA Electrodes: 1. The Case of Ti/IrO2 Anode,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 268-274. doi:10.1016/j.jhazmat.2008.12.117
[30] F. Ye, J. Li, X. Wang, T. Wang, S. Li, H. Wei, Q. Li and E. Christensen, “Electrocatalytic Properties of Ti/Pt-IrO2 Anode for Oxygen Evolution in PEM Water Electrolysis,” International Journal of Hydrogen Energy, Vol. 35, No. 15, 2010, pp. 8049-8055. doi:10.1016/j.ijhydene.2010.01.094
[31] Z.-G. Ye, H.-M. Meng, D. Chen, H.-Y. Yu, Z.-S. Huan, X.-D. Wang and D.-B. Sun, “Structure and Characteristics of Ti/IrO2(x)+MnO2(1?x) Anode for Oxygen Evolution,” Solid State Sciences, Vol. 10, No. 3, 2008, pp. 346-354. doi:10.1016/j.solidstatesciences.2007.09.011
[32] S. Siracusano, V. Baglio, A. Stassi, R. Ornelas, V. Antonucci and A. S. Aricò, “Investigation of IrO2 Electrocatalysts Prepared by a Sulfite-Couplex Route for the O2 Evolution Reaction in Solid Polymer Electrolyte Water Electrolyzers,” International Journal osssssf Hydrogen Energy, Vol. 36, No. 13, 2011, pp. 7822-7831. doi:10.1016/j.ijhydene.2010.12.080
[33] Y. Fang, y. Huang, H. Chen, G. Luo, X. Liu and L. Liu, “Determination Hydroxyl Radical in Titania Photocatalytic system,” Chinese Journal of Analytical Chemistry, Vol. 34, No. 9, 2006, pp. s83-s86.
[34] J. Yu, W. Wang, B. Cheng and B.-L. Su, “Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment,” The Journal of Physical Chemistry C, Vol. 113, No. 16, 2009, pp. 6743-6750. doi:10.1021/jp900136q
[35] M. Li, Q. Xue, Z. Zhang, C. Feng, N. Chen, X. Lei, Z. Shen and N. Sugiura, “Removal of Geosmin (Trans-1,10dimethyl-trans-9-decalol) from Aqueous Solution Using an indirect Electrochemical Method,” Electrochimica Acta, Vol. 55, No. 23, 2010, pp. 6979-6982. doi:10.1016/j.electacta.2010.06.060
[36] EPA, “Reregistration Eligibility Decision for Chlorsulfuron,” Environmental Protection Agency, Washington DC, 2005.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.