Diffusion models for the description of seedless grape drying using analytical and numerical solutions

This article compares diffusion models used to describe seedless grape drying at low temperature. The models were analyzed, assuming the following characteristics of the drying process: boundary conditions of the first and the third kind; constant and variable volume, V; constant and variable effective mass diffusivity, D; constant convective mass transfer coefficient, h. Solutions of the diffusion equation (analytical and numerical) were used to determine D and h for experimental data of seedless grape drying. Comparison of simulations of drying kinetics indicates that the best model should consider: 1) shrinkage; 2) convective boundary condition; 3) variable effective mass diffusivity. For the analyzed experimental dataset, the best function to represent the effective mass diffusivity is a hyperbolic cosine. In this case, the statistical indicators of the simulation can be considered excellent (the determination coefficient is R2 = 0.9999 and the chi-square is χ2 = 3.241 × 10–4).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Silva, W. , Silva e Silva, C. , Precker, J. , Gomes, J. , Nascimento, P. and Silva, L. (2012) Diffusion models for the description of seedless grape drying using analytical and numerical solutions. Agricultural Sciences, 3, 545-556. doi: 10.4236/as.2012.34065.

 [1] Margaris, D.P. and Ghiaus, A.G., (2007) Experimental study of hot air dehydration of Sultana grapes. Journal of Food Engineering, 79, 1115-1121. doi:10.1016/j.jfoodeng.2006.03.024 [2] Pangavhane, D.R., Sawhney, R.L. and Sarsavadia, P.N. (1999) Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. Journal of Food Engineering, 39, 211-216. doi:10.1016/S0260-8774(98)00168-X [3] Azzouz, S., Guizani, A., Jomaa, W. and Belghith, A. (2002) Moisture diffusivity and drying kinetic equation of convective drying of grapes. Journal of Food Engineering, 55, 323-330. doi:10.1016/S0260-8774(02)00109-7 [4] Doymaz, I. and Pala, M. (2002) The effects of dipping pretreatments on air-drying rates of the seedless grapes. Journal of Food Engineering, 52, 413-417. doi:10.1016/S0260-8774(01)00133-9 [5] Doymaz, I. (2006) Drying kinetics of black grapes treated with different solutions. Journal of Food Engineering, 76, 212-217. doi:10.1016/j.jfoodeng.2005.05.009 [6] Esmaiili, M., Rezazadeh, G., Sotudeh-Gharebagh, R. and Tahmasebi, A. (2007) Modeling of the seedless grape drying process using the generalized differential quadra- ture method. Chemical Engineering and Technology, 30, 168-175. doi:10.1002/ceat.200600151 [7] Di Matteo, M., Cin-quanta, L., Galiero, G. and Crescitelli, S. (2000) Effect of a novel physical pretreatment process on the drying kinetics of seedless grapes. Journal of Food Engineering, 46, 83-89. doi:10.1016/S0260-8774(00)00071-6 [8] Ramos, I.N., Miranda, J.M.R., Brand?o, T.R.S. and Silva, C.L.M. (2010) Estimation of water diffusivity parameters on grape dynamic drying. Journal of Food Engineering, 97, 519-525. doi:10.1016/j.jfoodeng.2009.11.011 [9] Bennamoun, L. and Belhamri, A. (2006) Numerical simulation of drying under variable external conditions: Application to solar drying of seedless grapes. Journal of Food Engineering, 76, 179-187. doi:10.1016/j.jfoodeng.2005.05.005 [10] Hacihafizoglu, O., Cihan, A., Kahveci, K. and Lima, A.G.B. (2008) A liquid diffusion model for thin-layer drying of rough rice. European Food Research and Technology, 226, 787-793. doi:10.1007/s00217-007-0593-0 [11] Silva, W.P., Precker, J.W., Silva, C.M.D.P.S. and Gomes, J.P. (2010) Determination of effective diffusivity and con- vective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: Application to the drying of rough rice. Journal of Food Engineering, 98, 302-308. doi:10.1016/j.jfoodeng.2009.12.029 [12] Queiroz, M.R. and Nebra, S.A. (2001) Theoretical and experimental analysis of the drying kinetics of bananas. Journal of Food Engineering, 4, 127-132. doi:10.1016/S0260-8774(00)00108-4 [13] Zhan, J.-F., Gu, J.-Y. and Cai, Y.-C. (2007) Analysis of moisture diffusivity of larch timber during convective drying condition by using Crank’s method and Dincer’s method. Journal of Forestry Research, 18, 199-203. doi:10.1007/s11676-007-0040-x [14] Kaya, A., Ayd?n, O. and Dincer, I. (2010) Comparison of experimental data with results of some drying models for regularly shaped products. Heat Mass Transfer, 46, 555- 562. doi:10.1007/s00231-010-0600-z [15] Jia, C., Yang, W., Siebenmorgen, T.J. and Cnossen, A.G. (2001) Development of computer simulation software for single grain kernel drying, tempering and stress analysis. Transactions of the ASAE, 45, 1485-1492. [16] Gastón, A.L., Abalone, R.M. and Giner, S.A. (2002) Wheat drying kinetics. Diffusivities for sphere and ellipsoid by finite elements. Journal of Food Engineering, 52, 313-322. doi:10.1016/S0260-8774(01)00121-2 [17] Li, Z., Ko-bayashi, N. and Hasatani, M. (2004) Modelling of diffu-sion in ellipsoidal solids: A comparative study. Drying Technology, 22, 649-675. doi:10.1081/DRT-120034256 [18] Wu, B., Yang, W. and Jia, C. (2004) A three-dimensional numerical simulation of transient heat and mass transfer inside a single rice kernel during the drying process. Bio- systems Engineering, 87, 191-200. doi:10.1016/j.biosystemseng.2003.09.004 [19] Carmo, J.E.F. and Lima, A.G.B. (2005) Drying of lentil including shrinkage: A numerical simulation. Drying Technology, 23, 1977-1992. doi:10.1080/07373930500210424 [20] Silva, W.P., Silva, C.M.D.P.S., Silva, D.D.P.S. and Silva, C.D.P.S. (2008) Numerical Simulation of the Water Diffusion in Cylin-drical Solids. International Journal of Food Engineering, 4, 1-16. doi:10.2202/1556-3758.1394 [21] Silva, W.P., Precker, J.W., Silva, C.M.D.P.S. and Silva, D.D.P.S. (2009) Determination of the effective diffusivity via minimization of the objective function by scanning: application to drying of cowpea. Journal of Food Engineering, 95, 298-304. doi:10.1016/j.jfoodeng.2009.05.008 [22] Silva, W.P., Silva, C.M.D.P.S., Farias, V.S.O. and Silva, D.D.P.S. (2010) Calculation of the convective heat transfer coef-ficient and cooling kinetics of an individual fig fruit. Heat and Mass Transfer, 46, 371-380. doi:10.1007/s00231-010-0577-7 [23] Luikov, A.V. (1968) Analytical heat diffusion theory. Academic Press Inc. Ltd, London. [24] Crank, J. (1992) The mathematics of diffusion. Clarendon Press, Oxford. [25] Patankar, S.V. (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. New York. [26] Bevington, P.R. and Robinson, D.K. (1992) Data reduction and error analysis for the physical sciences. 2nd Edition, WCB/McGraw-Hill, Boston. [27] Taylor, J.R. (1997) An introduction to error analysis. 2nd Edition, University Science Books, Sausalito. [28] Silva, W.P., Silva, C.M.D.P. S., Farias, V.S.O. and Gomes, J.P. (2012) Diffusion models to describe the drying process of peeled bananas: optimization and simulation. Drying Technology, 30,164-174. doi:10.1080/07373937.2011.628554