Share This Article:

Differential Proteome Analysis of Chlamydomonas reinhardtii Response to Arsenic Exposure

Abstract Full-Text HTML Download Download as PDF (Size:309KB) PP. 764-772
DOI: 10.4236/ajps.2012.36092    3,340 Downloads   6,433 Views   Citations


The fresh water unicellular green alga Chlamydomonas reinhardtii was used to explore whether it could function as a model system to identify proteins that are differentially expressed in response to arsenate exposure. Cells were treated with different concentrations of arsenate ranging from 100 - 400 μM. When exposed to 200 μM arsenate, the amount of live cells started to lessen on the second day and continued to diminish, indicating a toxic effect of arsenate. Proteomic analysis was used to investigate if these cells showed a specific response to arsenic-induced stress. Fifteen proteins were found that were over-expressed in the 200 μM arsenate-treated samples and two proteins were found to be very strongly over-expressed in samples treated with 400 μM. These were selected for identification using liquid chromatography coupled with tandem mass spectrometry. Oxidative stress and protein damage were the major effects as shown by the up-regulation of Mn-superoxide dismutase, an oxygen-evolving enhancer protein, a chaperonin-like protein and a heat shock protein.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Walliwalagedara, H. Keulen, B. Willard and R. Wei, "Differential Proteome Analysis of Chlamydomonas reinhardtii Response to Arsenic Exposure," American Journal of Plant Sciences, Vol. 3 No. 6, 2012, pp. 764-772. doi: 10.4236/ajps.2012.36092.


[1] M. I. S. Gonzaga, J. A. G. Santos and L. Q. Ma, “Arsenic Chemistry in the Rhizosphere of Pteris vittata L. and Nephrolepis exaltata. L.,” Environmental Pollution, Vol. 143, No. 2, 2006, pp. 254-260. doi:10.1016/j.envpol.2005.11.037
[2] M. I. S. Gonzaga, J. A. G. Santos and L. Q. Ma, “Arsenic Phytoextraction and Hyperaccumulation by Fern Species,” The Journal of Agricultural Science, Vol. 63, No. 1, 2006, pp. 90-101. doi:10.1590/S0103-90162006000100015
[3] B. Kumar Mandal and K. T. Suzuki, “Arsenic: Round the World: A Review,” Talanta, Vol. 58, No. 1, 2002, pp. 201-235. doi:10.1016/S0039-9140(02)00268-0
[4] C. Tu, L. Q. Ma and B. Bondada, “Arsenic Accumulation in the Hyperaccumulator Chinese Brake (Pteris vittata L.) and Its Utilization Potential for Phytoremediation,” Journal of Environmental Quality, Vol. 31, No. 5, 2002, pp. 1671-1675. doi:10.2134/jeq2002.1671
[5] A. A. Carbonell, M. A. Aarabi, R. D. DeLaune, R. P. Gambrell and W. H. Patrick Jr., “Arsenic in Wetland Vegetation: Availability, Phytotoxicity, Uptake and Effects on Plant Growth and Nutrition,” Science of the Total Environment, Vol. 217, No. 3, 1998, pp. 189-199. doi:10.1016/S0048-9697(98)00195-8
[6] R. D. Tripathi, S. Srivastava, S. Mishra, N. Singh, R. Tuli, D. K. Gupta and F. J. M. Maathuis, “Arsenic Hazards: Strategies for Tolerance and Remediation by Plants,” Trends in Biotechnology, Vol. 25, No.4 , 2007, pp. 158-165. doi:10.1016/j.tibtech.2007.02.003
[7] T. Takamatsu, H. Aoki and T. Yoshida, “Determination of Arsenate, Arsenite, Monomethylarsonate and Dimethylarsinite in Soil Polluted with Arsenic,” Soil Science, Vol. 133, No. 4, 1982, pp. 239-246. doi:10.1097/00010694-198204000-00007
[8] A. J. M. Baker, S. P. McGrath, R. D. Reeves and J. A. C. Smith, “Metal Hyperaccumulator Plants, a Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal Polluted Soils,” In: N. Terry and G. Baelos, Eds., Phytoremediation of Contaminated Soil and Water, Lewis Publishers, Boca Raton, 2000, pp. 85-107.
[9] J. Wang, F.-J. Zhao, A. A. Meharg, A. Raab, J. Feldmann and S. P. McGrath, “Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation,” Plant Physiol- ogy, Vol. 130, No. 3, 2002, pp. 1552-1561. doi:10.1104/pp.008185
[10] R. Requejo and M. Tena, “Maize Response to Acute Arsenic Toxicity as Revealed by Proteome Analysis of Plant Shoots,” Proteomics, Vol. 6, No. S1, 2006, pp. S156-S162. doi:10.1002/pmic.200500381
[11] M. J. Abedin, J. Feldmann and A. A. Meharg, “Uptake Kinetics of Arsenic Species in Rice Plants,” Plant Physiology, Vol. 128, No. 3, 2002, pp. 1120-1128. doi:10.1104/pp.010733
[12] H. van Keulen, R. Wei and T. J. Cutright, “Arsenate-Induced Expression of a Class III Chitinase in the Dwarf Sunflower Helianthus annuus,” Environmental and Experimental Botany, Vol. 63, No. 1-3, 2008, pp. 281-288. doi:10.1016/j.envexpbot.2007.11.012
[13] S. S. Merchant, S. E. Prochnik, O. Vallon, E. H. Harris, S. J. Karpowicz, et al., “The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions,” Science, Vol. 318, No. 5848, 2007, pp. 245-250. doi:10.1126/science.1143609
[14] P. May, S. Wienkoop, S. Kempa, B. Usadel, N. Christian, J. Rupprecht, J. Weiss, L. Recuenco-Munoz, O. Ebenh?h, W. Weckwerth and D. Walther, “Metabolomics- and Proteomics-Assisted Genome Annotation and Analysis of the Draft Metabolic Network of Chlamydomonas reinhardtii,” Genetics, Vol. 179, No. 1, 2008, pp. 157-166. doi:10.1534/genetics.108.088336
[15] V. Wagner, J. Boesger and M. Mittag, “Sub-Proteome Analysis in the Green Flagellate Alga Chlamydomonas reinhardtii,” Journal of Basic Microbiology, Vol. 49, No. 1, 2009, pp. 32-41. doi:10.1002/jobm.200800292
[16] M. Terashima, M. Specht and M. Hippler, “The Chloroplast Proteome, a Survey from the Chlamydomonas reinhardtii Perspective with a Focus on distinctive Features,” Current Genetics, Vol. 57, No. 3, 2011, pp. 151-168. doi:10.1007/s00294-011-0339-1
[17] J. M. Collard and R. F. Matagne, “Isolation and Genetic Analysis of Chlamydomonas reinhardtii Strains Resistant to Cadmium,” Applied and Environmental Microbiology, Vol. 56, No. 7, 1990, pp. 2051-2055.
[18] S. Hu, K. W. K. Lau and M. Wu, “Cadmium Sequestration in Chlamydomonas reinhardtii,” Plant Science, Vol. 161, No. 5, 2001, pp. 987-996. doi:10.1016/S0168-9452(01)00501-5
[19] M. Hanikenne, “Chlamydomonas reinhardtii as a Eukaryotic Photosynthetic Model for Studies of Heavy Metal Homeostasis and Tolerance,” New Phytologist, Vol. 159, No. 2, 2003, pp. 331-340. doi:10.1046/j.1469-8137.2003.00788.x
[20] B. F?rster, U. Mathesius and B. J. Pogson, “Comparative Proteomics of High Light Stress in the Model Alga Chlamydomonas reinhardtii,” Proteomics, Vol. 6, No. 15, 2006, pp. 4309-4320. doi:10.1002/pmic.200500907
[21] A. Rosakis and W. K?ster, “Transition Metal Transport in the Green Microalga, Chlamydomonas reinhardtii—Genomic Sequence Analysis,” Research in Microbiology, Vol. 155, No. 3, 2004, pp. 201-210. doi:10.1016/j.resmic.2003.12.004
[22] K. Nishikawa, A. Onodera and N. Tominaga, “Phytochelatins Do Not Correlate with the Level of Cd Accumulation in Chlamydomonas spp.,” Chemosphere, Vol. 63, No. 9, 2006, pp. 1553-1559. doi:10.1016/j.chemosphere.2005.09.056
[23] S. Gillet, P. Decottignies, S. Chardonnet and P. Le Maréchal, “Cadmium Response and Redoxin Targets in Chlamydomonas reinhardtii: A Proteomics Approach,” Photosynthesis Research, Vol. 89, No. 2-3, 2006, pp. 201-211. doi:10.1007/s11120-006-9108-2
[24] M. Srivastava, L. Q. Ma, N. Singh and S. Singh, “Antioxidant Responses in Hyper-Accumulator and Sensitive Fern Species to Arsenic,” Journal of Experimental Bot-any, Vol. 56, No. 415, 2005, pp. 1335-1342. doi:10.1093/jxb/eri134
[25] A. Raab, H. Schat, A. A. Meharg and J. Feldmann, “Uptake, Translocation and Transformation of Arsenate and Arsenite in Sunflower (Helianthus annuus: Formation of Arsenic-Phytochelatin Complexes during Exposure to High Arsenic Concentrations,” New Phytologist, Vol. 168, No. 3, 2005, pp. 551-558. doi:10.1111/j.1469-8137.2005.01519.x
[26] T. Kaise, S. Fujiwara, M. Tsuzuki, T. Sakurai, T. Saitoh and C. Mastubara, “Accumulation of Arsenic in a Unicellular Alga Chlamydomonas reinhardtii,” Applied Organometallic Chemistry, Vol. 13, No. 2, 1999, pp. 107-111. doi:10.1002/(SICI)1099-0739(199902)13:2<107::AID-AOC824>3.0.CO;2-9
[27] I. Kobayashi, S. Fugiwara, H. Saegusa, M. Inouhe, H. Matsumoto and M. Tsuzuki, “Relief of Arsenate Toxicity by Cd-Stimulated Phytochelatin Synthesis in the Green Alga Chlamydomonas reinhardtii,” Marine Biotechnol- ogy, Vol. 8, No. , 2005, pp. 94-101. doi:10.1007/s10126-005-5092-3
[28] N. Ahsan, D.-G. Lee, K.-H. Kim, I. Alam, S.-H. Lee, K.-W. Lee, H. Lee and B.-H. Lee, “Analysis of Arsenic Stress- Induced Differentially Expressed Proteins in Rice Leaves by Two-Dimensional Gel Electrophoresis Coupled with Mass Spectrometry,” Chemosphere, Vol. 78, No. 3, 2010, pp. 224-231. doi:10.1016/j.chemosphere.2009.11.004
[29] E. Bona, C. Cattaneo, P. Cesaro, F. Marsano, G. Lingua, M. and G. Berta, “Proteomic Analysis of Pteris vittata Fronds, Two Arbuscular Mycorrhizal Fungi Differentially Modulate Protein Expression under Arsenic Contamination,” Proteomics, Vol. 10, No. 21, 2010, pp. 3811-3834. doi:10.1002/pmic.200900436
[30] A. A. Meharg and J. Hartley-Whitaker, “Arsenic Uptake and Metabolism in Arsenic Resistant and Nonresistant Plant Species,” New Phytologist, Vol. 154, No. 1, 2002, pp. 29-43. doi:10.1046/j.1469-8137.2002.00363.x
[31] X. Cao, L. Q. Ma and C. Tu, “Antioxidative Responses to Arsenic in the Arsenic-Hyperaccumulator Chinese Brake Fern (Pteris vittata L.),” Environmental Pollution, Vol. 128, No. 3, 2004, pp. 317-325. doi:10.1016/j.envpol.2003.09.018
[32] C. Walliwalagedara, H. van Keulen, T. J. Cutright and R. Wei, “Comparison of Sample Preparation Methods for the Resolution of Metal-Regulated Proteins in Helianthus annuus by 2-Dimensional Gel Electrophoresis,” The Open Proteomics Journal, Vol. 3, 2010, pp. 20-25.
[33] F. A. Salomons, K. ács and N. P. Dantuma, “Illuminating the Ubiquitin/Proteasome System,” Experimental Cell Research, Vol. 316, No. 8, 2010, pp. 1289-1295. doi:10.1016/j.yexcr.2010.02.003
[34] H. Fu, J. H. Doelling, C. S. Arendt, M. Hochstrasser and R. D. Vierstra, “Molecular Organization of the 20S Proteasome Gene Family from Arabidopsis thaliana,” Genetics, Vol. 149, No. 2, 1998, pp. 677-692.
[35] J. Kurepa, S. Wang, Y. Li and J. Smalle, “Proteasome Regulation, Plant Growth and Stress Tolerance,” Plant Signaling & Behavior, Vol. 4, No. 10, 2009, pp. 924-927. doi:10.4161/psb.4.10.9469
[36] C. Walliwalagedara, I. Atkinson, H. van Keulen, T. Cutright and R. Wei, “Differential Expression of Proteins Induced by Lead in the Dwarf Sunflower Helianthus annuus,” Phytochemistry, Vol. 71, No. 13, 2010, pp. 1460- 1465. doi:10.1016/j.phytochem.2010.05.018
[37] A. Shapiguzov, A. Edvardsson and A. V. Vener, “Profound Redox Sensitivity of Peptidyl-Prolyl Isomerase Activity in Arabidopsis Thylakoid Lumen,” FEBS Letters, Vol. 580, No. 15, 2006, pp. 3671-3676. doi:10.1016/j.febslet.2006.05.054
[38] S. F. G?thel and M. A. Marahiel, “Peptidyl-Prolyl Cis-Trans Isomerases, a Superfamily of Ubiquitous Folding Catalysis,” Cellular and Molecular Life Sciences, Vol. 55, No. 3. 1999, pp. 423-436. doi:10.1007/s000180050299
[39] N. Ahsan, J. Renaut and S. Komatsu, “Recent Developments in the Application of Proteomics to the Analysis of Plant Responses to Heavy Metals,” Proteomics, Vol. 9, No. 10, 2009, pp. 2602-2621. doi:10.1002/pmic.200800935
[40] J. E. Sarry, L. Kuhn, C. Ducruix, A. Lafaye, C. Junot, V. Hugouvieux, A. Jourdain, O. Bastein, J. B. Fievet, D. Vailhen, B. Amekaraz, C. Moulin, E. Ezan, J. Garinand and J. Bourguignon, “The Early Responses of Arabidopsis thaliana Cells to Cadmium Exposure Explored by Protein and Metabolic Profiling Analysis,” Proteomics, Vol. 6, No. 7, 2006, pp. 2180-2198. doi:10.1002/pmic.200500543
[41] K. B. Aly, J. L. Pipkin, W. G. Hinson, R. J. Feuers, P. H. Duffy, L. Lyn-Cook and R. W. Hart, “Chronic Caloric Restriction Induces Stress Proteins in the Hypothalamus of Rats,” Mechanisms of Ageing and Development, Vol. 76, No. 1, 1994, pp. 11-23. doi:10.1016/0047-6374(94)90003-5
[42] M. E. Feder and G. E. Hofmann, “Heat-Shock Proteins, Molecular Chaperones, and the Stress Response, Evolutionary and Ecological Physiology,” Annual Review of Physiology, Vol. 61, 1999, pp. 243-282. doi:10.1146/annurev.physiol.61.1.243
[43] H. Führs, M. Hartwig, L. E. B. Molina, D. Heintz, A. V. van Dorsselaer, H. P. Braun and W. J. Horst, “Early Manganese-Toxicity Response in Vigna unguiculata L.—A Proteomic and Transcriptomic Study,” Proteomics, Vol. 8, No. 1, 2008, pp. 149-159. doi:10.1002/pmic.200700478
[44] M. Hajduch, R. Rakwal, G. K. Agrawal, M. Yonekura and A. Pretova, “High Resolution Two-Dimensional Electrophoresis Separation of Proteins from Metal Stressed Rice (Oryza sativa L.) Leaves: Drastic Reductions/Fragmentation of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase and Induction of Stress-Related Proteins,” Electrophoresis, Vol. 22, No. 13, 2001, pp. 2824-2831. doi:10.1002/1522-2683(200108)22:13<2824::AID-ELPS2824>3.0.CO;2-C
[45] P. Kieffer, P. Schr?der, J. Dommes, L. Hoffmann, J. Renaut and J. F. Hausman, “Proteomic and enzymatic Response of Poplar to Cadmium Stress,” Journal of Proteomics, Vol. 72, No. 3, 2009, pp. 379-396. doi:10.1016/j.jprot.2009.01.014
[46] M. H. Tuomainen, N. Nunan, S. J. Lehesranta, A. I. Tervahauta, V. H. Hassinen, H. Schat, K. M. Koistinen, S. Auriola, J. McNicol and S. O. K?renlampi,” Multivariate Analysis of Protein Profiles of Metal Hyperaccumulator Thlaspi caerulescens Accessions,” Proteomics, Vol. 6, No. 12, 2006, pp. 3696-3706. doi:10.1002/pmic.200501357
[47] J.-W. Kim and C. V. Dang, “Multifaceted Roles of Glycolytic Enzymes,” Trends in Biochemical Sciences, Vol. 30, No. 3, 2005, pp. 142-150. doi:10.1016/j.tibs.2005.01.005
[48] N. Ahsan, D-G. Lee, I. Alam, P. J. Kim, J. J. Lee, Y. O. Ahn, S. S. Kwak, I. J. Lee, J. D. Bahk, K. Y. Kang, J. Renaut, S. Komatsu and B-H. Lee, “Comparative Proteomic Study of Arsenic-Induced Differentially Expressed Proteins in Rice Roots Reveals Glutathione Plays a Central Role during As Stress,” Proteomics, Vol. 8, No. 17, 2008, pp. 3561-3576. doi:10.1002/pmic.200701189
[49] T. Fukuda, A. Saito, J. Wasaki, T. Shinano and M. Osaki, “Metabolic Alterations Proposed by Proteome in Rice Roots Grown under Low P and High Al Concentration under Low pH,” Plant Science, Vol. 172, No. 6, 2007, pp. 1157-1165. doi:10.1016/j.plantsci.2007.02.020
[50] H. Heide, H. M. Kalisz and H. Follmann, “The Oxygen Evolving Enhancer Protein 1, (OEE) of Photosystem II in Green Algae Exhibits Thioredoxin Activity,” Journal of Plant Physiology, Vol. 161, No. 2, 2004, pp. 139-149. doi:10.1078/0176-1617-01033
[51] N. Rolland, A. Atteia, P. Decottignies, J. Garin, M. Hippler, G. Kreimer, S. D. Lemaire, M. Mittag and V. Wagner, “Chlamydomonas Proteomics,” Current Opinion in Microbiology, Vol. 12, No. 3, 2009, pp. 285-291. doi:10.1016/j.mib.2009.04.001
[52] C. S. Im and A. R. Grossman, “Identification and Regulation of High Light-Induced Genes in Chlamydomonas reinhardtii,” The Plant Journal, Vol. 30, No. 3, 2001, pp. 301-313. doi:10.1046/j.1365-313X.2001.01287.x.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.