Share This Article:

Some of Semi Analytical Methods for Blasius Problem

Abstract Full-Text HTML Download Download as PDF (Size:149KB) PP. 724-728
DOI: 10.4236/am.2012.37106    3,700 Downloads   6,523 Views   Citations
Author(s)    Leave a comment

ABSTRACT

In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two cases are obtained by using these methods and their results are shown in table.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Catal, "Some of Semi Analytical Methods for Blasius Problem," Applied Mathematics, Vol. 3 No. 7, 2012, pp. 724-728. doi: 10.4236/am.2012.37106.

References

[1] H. Blasius, “Grenzschichtenin Flüssigkeiten mit Kleiner Reibung,” Zeitschrift für angewandte Mathematik und Physik, Vol. 56, 1908, pp. 1-37.
[2] W. V. R. Malkus, “Borders of Disorder,” Studies in Applied Mathematics, Vol. 107, No. 4, 2001, pp. 325-336. doi:10.1111/1467-9590.1074189
[3] W. P. Kotorynski, “A Sturm-Liouvillle Problem Associated with the Falkner-Skan equation,” SIAM Journal on Applied Mathematics, Vol. 17, No. 5, 1969, pp. 992-995. doi:10.1137/0117087
[4] A. Pantokratoras, “The Falkner-Skan Flow with Constant Wall Temperature and Variable Viscosity,” International Journal of Thermal Sciences, Vol. 45, No. 4, 2006, pp. 378-389. doi:10.1016/j.ijthermalsci.2005.06.004
[5] W. Van Oudheusden, “A Complete Crocco Integral for Two-Dimensional Laminar Boundary Layer Flow over an Adiabatic Wall for Prandtl Numbers near Unity,” Journal of Fluid Mechanics, Vol. 353, 1997, pp. 313-330. doi:10.1017/S0022112097007507
[6] Z. Belhachmi, B. Brighi and K. Taous, “On the Family of Differential Equations for Boundary Layer Approximations in Porous Media,” European Journal of Applied Mathematics, Vol. 12, No. 4, 2001, pp. 513-528. doi:10.1017/S0956792501004582
[7] V. L. Streeter and E. B. Wylie, “Fluid Mechanics,” McGraw-Hill International Editions, Civil and Mechanical Engineering Series, 1983.
[8] R. W. Fox, A. T. McDonald and P. J. Pritehard, “Introduction to Fluid Mechanics,” 6th Edition, John Wiley & Sons, New York, 2003.
[9] B. Gahan, J. J. H. Miller and G. I. Shishkin, “Accurate Numerical Method for Blasius’ Problem for Flow past a Flat Plate with Mass Transfer,” Proceedings of Fds 2000 Conference, 2000. http://www.maths.tcd.ie/report_series/tcdmath/tcdm0005.pdf
[10] E. Assareh, M. A. Behrang, M. Ghalambaz, A. R. Noghrehabadi and A. Ghanbarzadeh, “A New Approach to Solve Blasius Equation Using Parameter Identification of Nonlinear Functions Based on the Bees Algorithm (BA),” World Academy of Science, Engineering and Technology, Vol. 73, 2011, pp. 1119-1121.
[11] I. G. Shukhman, “On Stationary Solutions for Free QuasiParallel Mixing Layers with a Longitudinal Magnetic Field,” Journal of Fluid Mechanics, Vol. 452, 2002, pp. 337-359. doi:10.1017/S0022112001006760
[12] A. I. Zadorin, “Numerical Method for Blasius Equation on an Infinite Interval”. http://num.math.uni-goettingen.de/bail/documents/proceedings/zadorin.pdf
[13] S.-J. Liao, “A Uniformly Valid Analytic Solution of TwoDimensional Viscous Flow over a Semi-Infinite Flat Plate,” Journal of Fluid Mechanics, Vol. 385, 1999, pp. 101-128. doi:10.1017/S0022112099004292
[14] S. Abbasbandy, “A Numerical Solution of Blasius Equation by Adomian’s Decomposition Method and Comparison with Homotopy Perturbation Method,” Chaos, Solutions and Fractals, Vol. 31, No. 1, 2007, pp. 257-260. doi:10.1016/j.chaos.2005.10.071
[15] M. O. Miansari, M. E. Miansari, A. Barari and G. Domairry, “Analysis of Blaisus Equation for Flat-Plate Flow with Infinite Boundary Value,” International Journal for computational Methods in Engineering Science and Mechanics, Vol. 11, 2010, pp. 79-84.
[16] H. Bulut and O. Kelesoglu, “Comparing Numerical Methods for Response of Beams with Moving Mass,” Advances in Engineering Software, Vol. 41, No. 7-8, 2010, pp. 976-980. doi:10.1016/j.advengsoft.2010.05.006
[17] L. Wang, “A New Algorithm for Solving Classical Blasius Equation,” Applied Mathematics and Computation, Vol. 157, No. 1, 2004, pp. 1-9. doi:10.1016/j.amc.2003.06.011
[18] T. Wickramasinghe, “Studies in Numerical and Decomposition Solution Profiles of Blasius Equation,” Advanced Studies in Theoretical Physics, Vol. 4, No. 8, 2010, pp. 363-367.
[19] A. Ar?ko?lu and ?., ?zkol, “Inner-Outer Matching Solution of Blasius Equation by DTM,” Aircraft Engineering and Aerospace Technology: An International Journal, Vol. 77, No. 4, 2005, pp. 298-301. doi:10.1108/00022660510606367
[20] H. A. Peker, O. Karao?lu and G. Oturan?, “The Differential Transformation Method and Pade Approximant for a Form of Blasius Equation,” Mathematical and Computational Applications, Vol. 16, No. 2, 2011, pp. 507-513.
[21] L. Howarth, “On the Solution of the Laminar Boundary Layer Equations,” Proceedings of the Royal Society A, Vol. 164, No. 919, 1938, pp. 547-579. doi:10.1098/rspa.1938.0037

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.