Share This Article:

Capacitive Properties of Mesoporous Mn-Co Oxide Derived from a Mixed Oxalate

Abstract Full-Text HTML XML Download Download as PDF (Size:738KB) PP. 377-383
DOI: 10.4236/msa.2012.36054    3,759 Downloads   6,905 Views   Citations

ABSTRACT

A mesoporous Mn-Co oxide for supercapacitors was derived from a mixed oxalate Mn0.8Co0.2C2O4·nH2O, which was synthesized by a solid-state coordination reaction at room temperature. The synthesized mixed Mn-Co oxalate was decomposed in air at 250°C, resulting in a tetragonal spinel Mn-Co oxide with a primary particle size less than 100 nm. The obtained Mn-Co oxide presents a mesoporous texture with a specific surface area of 120 m2·g﹣1. Electrochemical properties of the Mn-Co oxide electrode were investigated by cyclic voltammetry and galvanostatic charge/discharge in 6 mol·L﹣1 KOH electrolyte. The Mn-Co oxide electrode delivered specific capacitances of 383 and 225 F·g﹣1 at scan rates of 2 and 50 mV·s﹣1, respectively. Subjected to 500 cycles at a current density of 1.34 A·g﹣1, the symmetrical Mn-Co oxide capacitor showed specific capacitance of 179 F·g﹣1, still retaining ~85% of its initial capacitance. The obtained Mn-Co oxide material showed good capacitive performance, which was promising for supercapacitor applications.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Yan, B. Wu, C. Zheng and D. Fang, "Capacitive Properties of Mesoporous Mn-Co Oxide Derived from a Mixed Oxalate," Materials Sciences and Applications, Vol. 3 No. 6, 2012, pp. 377-383. doi: 10.4236/msa.2012.36054.

References

[1] B. E. Conway, “Electrochemical Supercapacitors,” Kluwer Academic Publishers, New York, 1999
[2] A. Burke, “Ultracapacitors: why, how, and where is the technology,” Journal of Power Sources, Vol. 91, No. 1, 2000, pp. 37-50. doi:10.1016/S0378-7753(00)00485-7
[3] J. R. Miller and A. Burke, “Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications,” Electrochemical Society Interface, Vol. 17, No. 1, 2008, pp. 53-57.
[4] Y. Liu, K. X. Li, J. L. Wang, G. H. Sun and C. G. Sun, “Preparation of Spherical Activated Carbon with Hierarchical Porous Texture,” Journal of Materials Science, Vol. 44, No. 17, 2009, pp. 4750-4753. doi:10.1007/s10853-009-3710-6
[5] A.G. Pandolfo and A.F. Hollenkamp, “Carbon Propertites and Their Role in Supercapacitors,” Journal of Power Sources, Vol. 157, No. 1, 2006, pp. 11-27. doi:10.1016/j.jpowsour.2006.02.065
[6] T. Nathan, A. Aziz, A. F. Noor and S. R. S. Prabaharan, “Nanostructured NiO for Electrochemical Capacitors: Synthiesis and Electrochemical Properties,” Journal of Solid State Electrochemistry, Vol. 12, No. 7-8, 2007, pp. 1003-1009. doi:10.1007/s10008-007-0465-3
[7] J. Cheng, G. P. Cao and Y. S. Yang, “Characterization of Sol-Gel-Derived NiOx Xerogels Supercapacitors,” Journal of Power Sources, Vol. 159, No. 1, 2006, pp. 734-731. doi:10.1016/j.jpowsour.2005.07.095
[8] D. Bélanger, T. Brousse and J. W. Long, “Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors,” Electrochemical Society Interface, Vol. 17, No. 1, 2008, pp. 47-52.
[9] D.K. Bhat and M.S. Kumar, “N and P Doped Poly(3,4Ethylenedioxythiophene) Electrode Materials for Symmetric Redox Supercapacitors,” Journal of Materials Science, Vol. 42, No. 19, 2008, pp. 8158-8162 doi:10.1007/s10853-007-1704-9
[10] H. Guan, L.Z. Fan, H.C. Zhang and X.H. Qu, “Polyaniline Nanofiber Obtained by Interfacial Polymerization for High-Rate Supercapacitors,” Electrochimica Acta, Vol. 56, No. 2, 2010, pp. 964-968. doi:10.1016/j.electacta.2010.09.078
[11] J. P. Zheng, “Ruthenium Oxide-Carbon Composite Electrodes for Electrochemical Capacitors,” Electrochemical and Solid-State Letters, Vol. 2, No. 8, 1999, pp. 359-361 doi:10.1149/1.1390837
[12] E. H. Liu, R. Ding, X. Y. Meng, S. T. Tan and J. C. Zhou, “Potentiodynamical Deposition of Nanosized Manganese Oxides as High Capacitance Electrochemical Capacitors,” Journal of Materials Science Materials in Electronics, Vol. 18, No. 12, 2007, pp. 1179-1182 doi:10.1007/s10854-007-9369-3
[13] R. N. Reddy, R. G. Reddy, “Synthesis and Electrochemical Characterization of Amorphous MnO2 Electrochemical Capacitor Electrode Material,” Journal of Power Sources, Vol. 132, No. 1-2, 2004, pp. 315-320 doi:10.1016/j.jpowsour.2003.12.054
[14] T. Brousse, M. Toupin, R. Dugas, L. Athou?l, O. Crosnier and D. Bélange, “Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors,” Journal of the Electrochemical Society, Vol. 153, No. 12, 2006, pp. A2171-A2180. doi:10.1149/1.2352197
[15] L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Bélanger and T. Brousse, “Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte,” Journal of Physical Chemistry, Vol. 112, No. 18, 2008, pp. 7270-7277. doi:10.1021/jp0773029
[16] F. B. Zhang, Y. K. Zhou and H. L. Li, “Nanocrystalline NiO as an Electrode Material for Electrochemical Capacitor,” Materials Chemistry and Physics, Vol. 83, No. 2-3, 2004, pp. 260-264. doi:10.1016/j.matchemphys.2003.09.046
[17] X. M. Liu, X. G. Zhang and S. Y. Fu, “Preparation of Urchinlike NiO Nanostructures and Their Electrochemical Capacitive Behaviors,” Materials Research Bulletin, Vol. 41, No. 3, 2006, pp. 620-627. doi:10.1016/j.materresbull.2005.09.006
[18] T. Y. Wei, C. H. Chen, K. H. Chang, S. Y. Lu and C. C. Hu, “Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route,” Chemistry of Materials, Vol. 21, No. 14, 2009, pp. 3228-3233. doi:10.1021/cm9007365
[19] Y.Y. Gao, S.L. Chen, D.X. Cao, G.L. Wang and J.L. Yin, “Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam,” Journal of Power Sources, Vol. 195, No. 6, 2010, pp. 1757-1760. doi:10.1016/j.jpowsour.2009.09.048
[20] E. H. Liu, W. Li, J. Li, X. Y. Meng and S. T. Tan, “Preparation and Characterization of Nanostructured NiO/MnO2 Composite Electrode for Electrochemical Supercapacitors,” Materials Research Bulletin, Vol. 44, No. 5, 2009, pp. 1122-1126. doi:10.1016/j.materresbull.2008.10.003
[21] H. Kim and B. N. Popov, “Synthesis and Characterization of MnO2 Based Mixed Oxides as Supercapacitors,” Journal of The Electrochemical Society, Vol. 150, No. 3, 2003, pp. D56-D62. doi:10.1149/1.1541675
[22] M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki and K. Ogura. “Electrodeposition of Manganese and Molybdenum Mixed Oxide Thin Films and Their Charge Storage Properties,” Langmuir, Vol. 21, No. 13, 2005, pp. 5907-5913. doi:10.1021/la050114u
[23] X. Y. Xie, W. W. Liu, L. Y. Zhao and C. D. Huang, “Structural and Electrochemical Behavior of Mn-V Oxide Synthesized by a Novel Precipitation Method,” Journal of Solid State Electrochemistry, Vol. 14, No. 1, pp. 1585-1594. doi:10.1007/s10008-009-0987-y
[24] P. Y. Chuang and C. C. Hu, “The Electrochemical Characteristics of Binary Manganese-Cobalt Oxides Prepared by Anodic Deposition,” Materials Chemistry and Physics, Vol. 92, No. 1, pp. 138-145. doi:10.1016/j.matchemphys.2005.01.004
[25] G. Y. Zhao, C. L. Xu and H. L. Li, “Highly Ordered Cobalt-Manganese Oxide (CMO) Nanowire Array Thin Film on Ti/Si Substrate as an Electrode for Electrochemical Capacitor,” Journal of Power Sources, Vol. 163, No. 2, 2007, pp. 1132-1136. doi:10.1016/j.jpowsour.2006.09.085
[26] E. Machefauxa, T. Brousseb, D. Bélangerc and D. Guyomard, “Supercapacitor Behavior of New Substituted Manganese Dioxides,” Journal of Power Sources, Vol. 165, No. 2, 2007, pp. 651-655 doi:10.1016/j.jpowsour.2006.10.060
[27] D. L. Fang, Z. B. Wang, P. H. Yang, W. Liu and C. S. Chen, “Preparation of Ultra-Fine Nickel Manganite Powders and Ceramics by a Solid-State Coordination Reaction,” Journal of the American Ceramic Society, Vol. 89, No. 1, 2006, pp. 230-235. doi:10.1111/j.1551-2916.2005.00666.x
[28] D. L Fang, C. S Chena and A. J. A. Winnubstc, “Preparation and Electrical Properties of FexCu0.10Ni0.66Mn2.24?xO4 (0 ≤ x ≤ 0.90) NTC Ceramics,” Journal of Alloys and Compounds, Vol. 454, No. 1-2, 2008, pp. 286-291. doi:10.1016/j.jallcom.2006.12.059
[29] F. Rouquerol, J. Rouquerol and K. Sing, “Adsorption by Powers and Porous Solids: Principles Methodology and Applications,” Academic Press, San Diego, 1999.
[30] T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian and S. Yoshikawa, “A Modified Sol-Gel Process-Derived Highly Nanocrystalline Mesoporous NiO with Narrow Pore Size Distribution,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 296, No. 1-3, 2007, pp. 222-229. doi:10.1016/j.colsurfa.2006.09.048
[31] E. Raymundo-Pinero, V. Khomenko and E. Frackowiak, “Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors,” Journal of The Electrochemical Society, Vol. 152, No. 1, 2005, pp. 229-235. doi:10.1149/1.1834913
[32] D. L. Fang, B. C. Wu, A. Q. Mao, Y. Yan and C. H. Zheng, “Supercapacitive Properties of Ultra-Fine MnO2 Prepared by a Solid-State Coordination Reaction,” Journal of Alloys and Compounds, Vol. 507, No. 2, 2010, pp. 526-530. doi:10.1016/j.jallcom.2010.08.010
[33] M. Toupin, T. Brousse and D. Bélanger, “The Influence of Microstructure on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide,” Chemistry of Materials, Vol. 14, No. 9, 2002, pp. 3946-3952. doi:10.1021/cm020408q
[34] S. J. Bao, B. L. He, Y. Y. Liang, W. J. Zhou and H. L. Li. “Synthesis and Electrochemical Characterization of Amorphous MnO2 for Electrochemical Capacitor,” Materials Science and Engineering: A, Vol. 397, No. 1-2, 2005, pp. 305-309. doi:10.1016/j.msea.2005.02.058
[35] C. H. Zheng and D. L. Fang, “Preparation of Ultra-Fine Cobalt-Nickel Manganite Powders and Ceramics Derived From Mixed Oxalate,” Materials Research Bulletin, Vol. 43, No. 7, 2008, pp. 1877-1882. doi:10.1016/j.materresbull.2007.06.061
[36] J. Li, X. Y. Wang, Q. H. Huang, S. Gamboa and P. J. Sebastian, “A New Type of MnO2?xH2O/CRF Composite Electrode for Supercapacitors,” Journal of Power Sources, Vol. 160, No. 2, 2006, pp. 1501-1505. doi:10.1016/j.jpowsour.2006.02.045

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.