β-Galactosidase Leakage from Escherichia coli Points to Mechanical Damageas Likely Cause of Carbon Nanotube Toxicity

Abstract

We show that the cytotoxic effect of carbon nanotubes (CNTs) on bacteria is mediated by mechanical damage to the cell wall and membrane. Two β-galactosidase-producing strains of Escherichia coli harboringgenomically integrated reporter gene constructs, namely pchbB:lacZand prpoS:lacZ, were used for the purpose. We first verified that CNTs result in an inhibition of cell growth. Enzyme activity was determined using a reporter gene assay in which CNTs were used without the lysis buffer (containing detergent). β-galactosidase activity in the presence of CNTs alone measured several fold more than the controls used (without nanotubes). This suggests that CNTs damage the cell membrane in a manner similar to the detergent in the lysis buffer and render E. coli cell walls porous, causing cell contents including enzymes to leak out into the medium. Our results support the hypothesis that mechanical damage to bacterial cell membranes is the prevailing cause of CNT-cytotoxicity.

Share and Cite:

S. Amarnath, M. Hussain, V. Nanjundiah and A. Sood, "β-Galactosidase Leakage from Escherichia coli Points to Mechanical Damageas Likely Cause of Carbon Nanotube Toxicity," Soft Nanoscience Letters, Vol. 2 No. 3, 2012, pp. 41-45. doi: 10.4236/snl.2012.23008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. S. Brady-Estévez, T. H. Nguyen, L. Gutierrez and M. Elimelech, “Impact of Solution Chemistry on Viral Re moval by a Single-Walled Carbon Nanotube Filter,” Water Research, Vol. 44, 2010, pp. 3773-3780. doi:10.1016/j.watres.2010.04.023
[2] A. S. Brady-Estévez, M. H. Schnoor, C. D. Vecitis, N. B. Saleh and M. Elimelech, “Multiwalled Carbon Nanotube Filter: Improving Viral Removal at Low Pressure,” Langmuir, Vol. 26, No. 18, 2010, pp. 14975-14982. doi:10.1021/la102783v
[3] D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds and T. R. Webb, “Comparative Pul- monary Toxicity Assessment of Single-Wall Carbon Nano- tubes in Rats,” Toxicological Sciences, Vol. 77, No. 1, 2004, pp. 117-125. doi:10.1093/toxsci/kfg228
[4] C. W. Lam, J. T. James, R. McCluskey and R. L. Hunter, “Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days after Intratracheal Instillation,” Toxicological Sciences, Vol. 77, No. 1, 2004, pp. 126-134. doi:10.1093/toxsci/kfg243
[5] G. Jia, H. F. Wang, L. Yan and X. Wang, “Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi- Wall Nanotube, and Fullerene,” Environmental Science & Technology, Vol. 39, No. 5, 2005, pp. 1378-1383. doi:10.1021/es048729l
[6] S. K. Manna, S. Sarkar, J. Barr, K. Wise, E. V. Barrera, O. Jejelowo, A. C. Rice-Ficht and G. T. Ramesh, “Single Walled Carbon Nanotube Induces Oxidative Stress and Activates Nuclear Transcription Factor-kB in Human Keratinocytes,” Nano Letters, Vol. 5, No. 9, 2005, pp. 1676-1684. doi:10.1021/nl0507966
[7] K. Aschberger, H. J. Johnston, V. Stone, R. J. Aitken, S. M. Hankin, S. A. Peters, C. L. Tran and F. M. Christensen, “Review of Carbon Nanotubes Toxicity and Exposure—Appraisal of Human Health Risk Assessment Based on open literature,” Critical Reviews in Toxicology, Vol. 40, No. 9, 2010, pp. 759-790. doi:10.3109/10408444.2010.506638
[8] H. J. Johnston, G. R. Hutchison, F. M. Christensen, S. Peters, S. Hankin, K. Aschberger and V. Stone, “A Critical Review of the Biological Mechanisms Underlying the in Vivo and in Vitro Toxicity of Carbon Nanotubes: The Contribution of Physico-Chemical Characteristics,” Nano-toxicology, Vol. 4, No. 1, 2010, pp. 207-246. doi:10.3109/17435390903569639
[9] M. A. Hussain, M. A. Kabir and A. K. Sood, “On the Cytotoxicity of Carbon Nanotubes,” Current Science, Vol. 96, No. 5, 2009, pp. 664-673.
[10] S. Kang, M. Pinault, L. D. Pfefferle and M. Elimelech, “Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity,” Langmuir, Vol. 23, No. 17, 2007, pp. 8670-8673. doi:10.1021/la701067r
[11] S. Kang, M. Herzberg, D. F. Rodrigues and M. Elimelech, “Antibacterial Effects of Carbon Nanotubes: Size Does Matter!” Langmuir, Vol. 24, No. 13, 2008, pp. 6409-6413. doi:10.1021/la800951v
[12] S. Kang, M. S. Mauter and M. Elimelech, “Physicochemical Determinants of Multiwalled Carbon Nanotube Bacterial Cytotoxicity,” Environmental Science & Technology, Vol. 42, 2008, pp. 7528-7534. doi:10.1021/es8010173
[13] J. D. Schiffman and M. Elimelech, “Antibacterial Activity of Electrospun Polymer Mats with Incorporated Narrow Diameter Single-Walled Carbon Nanotubes,” ACS Appl Mater Interfaces, Vol. 3, 2011, pp. 462-468. doi:10.1021/am101043y
[14] S. Aslan, C. Z. Loebick, S. Kang, M. Elimelech, L. D. Pfefferle and P. R. Van Tassel, “Antimicrobial Biomaterials Based on Carbon Nanotubes Dispersed in Poly(lac- tic-co-glycolic acid),” Nanoscale, Vol. 2, No. 9, 2010, pp. 1789-1794. doi:10.1039/c0nr00329h
[15] D. F. Rodrigues and M. Elimelech, “Toxic Effects of Single-Walled Carbon Nanotubes in the Development of E. coli Biofilm,” Environmental Science & Technology, Vol. 44, No. 12, 2010, pp. 4583-4589. doi:10.1021/es1005785
[16] T. Akasaka, M. Matsuoka, T. Hashimoto, S. Abe, M. Uo and F. Watari, “The Bactericidal Effect of Carbon Nano- tube/Agar Composites Irradiated with Near-Infrared Light on Streptococcus Mutans,” Materials Science and Engineering B, Vol. 173, No. 1-3, 2010, pp. 187-190. doi:10.1016/j.mseb.2010.01.001
[17] A. Nel, T. Xia, L. Madler and N. Li, “Toxic Potential of Materials at the Nanolevel,” Science, Vol. 311, No. 5761, 2006, pp. 622-627. doi:10.1126/science.1114397
[18] A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwe- gler-Berry, R. Murray, V. Z. Gandelsman, A. Maynard and P. Baron, “Exposure to Carbon Nanotube Material: Assessment of the Biological Effects of Nanotube Materials Using Human Keratinocyte Cells,” Journal of Toxicology and Environmental Health, Part A, Vol. 66, 2003, pp. 1909-1926. doi:10.1080/713853956
[19] K. Pulskamp, S. Diabate and H. F. Krug, “Carbon Nano- tubes Show No Sign of Acute Toxicity but Induce Intra- cellular Reactive Oxygen Species in Dependence on Contaminants,” Toxicology Letters, Vol. 168, No. 1, 2007, pp. 58-74. doi:10.1016/j.toxlet.2006.11.001
[20] G. Bertani, “Studies on Lysogenesis. I. The Mode of Phage Liberation by Lysogenic Escherichia coli,” Journal of Bacteriology, Vol. 62, No. 3, 1951, pp. 293-300.
[21] J. Plumbridge and O. Pellegrini, “Expression of the chitobiose Operon of Escherichia coli is Regulated by Three Transcription Factors: NagC, ChbR and CAP,” Molecular Microbiology, Vol. 52, No. 2, 2004, pp. 437-449. doi:10.1111/j.1365-2958.2004.03986.x
[22] H. E. Schellhorn and H. M. Hassan, “Transcriptional Regulation of katE in Escherichia coli K-12,” Journal of Bacteriology, Vol. 170, No. 9, 1988, pp. 4286-4292.
[23] J. Miller, “Experiments in Molecular Genetics,” Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, 1972.
[24] F. Tian, D. Cui, H. Schwarz, G. G. Estrada and H. Koba- yashi, “Cytotoxicity of Single-Wall Carbon Nanotubes on Human Fibroblasts,” Toxicology in Vitro, Vol. 20, No. 7, 2006, pp. 1202-1212. doi:10.1016/j.tiv.2006.03.008
[25] Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari and K. Tohji, “Influence of Length On Cytotoxicity of Multi-Walled Carbon Nanotubes against Human Acute Monocytic Leukemia Cell Line THP-1 in Vi tro and Subcutaneous Tissue of Rats in Vivo,” Molecular BioSystems, Vol. 1, 2005, pp. 176-182. doi:10.1039/b502429c
[26] A. H. Kachroo, A. K. Kancherla, N. S. Singh, U. Varshney and S. Mahadevan, “Mutations that Alter the Regulation of the Chb Operon of Escherichia coli Allow Utilization of Cellobiose,” Molecular Microbiology, Vol. 66, No. 6, 2007, pp.1382-1395.
[27] M. Ranjna, M. Sudha and M. Subramony, “Enhanced Expression of the Bgl Operon of Escherichia coli in the Stationary Phase,” FEMS Microbiology Letters, Vol. 288, No. 1, 2008, pp. 131-139. doi:10.1111/j.1574-6968.2008.01346.x
[28] C. D. Vecitis, K. R. Zodrow, S. Kang and M. Elimelech, “Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes,” ACS Nano, Vol. 4, No. 9, 2010, pp. 5471-5454. doi:10.1021/nn101558x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.