Share This Article:

Enhanced Succinic Acid Production from Sake Lees Hydrolysate by Dilute Sulfuric Acid Pretreatment and Biotin Supplementation

Abstract Full-Text HTML Download Download as PDF (Size:160KB) PP. 19-25
DOI: 10.4236/jsbs.2012.22003    4,254 Downloads   8,849 Views   Citations

ABSTRACT

Succinic acid is valued as a potential starting point for the production of chemicals of the C4 family or in the prepara-tion of biodegradable polymers. For sustainable development in this era of petroleum shortage, production of succinic acid by microbial fermentation of renewable feedstock has attracted great interest. In this study, pretreatment with sulfuric acid and biotin supplementation were used to enhance succinic acid production by Actinobacillus succinogenes 130Z from sake lees, a byproduct of Japanese rice wine. Pretreatment with sulfuric acid resulted in little change of glucose, total nitrogen and succinic acid content in the sake lees hydrolysate but had a positive effect on succinic acid fermentation, which caused a 25.0% increase in succinic acid yield in batch fermentation. Biotin supplementation was used to further enhance the fermentability of sake lees hydrolysate. As a result, a 30 h batch fermentation of 0.5% sulfuric acid pretreated sake lees hydrolysate with 0.2 mg/L biotin gave a succinic acid yield of 0.59 g/g from 61.6 g/L of glucose, with a productivity of 1.21 g/(L?h). A 22.9% increase in succinic acid yield and a 101.7% increase in succinic acid productivity were obtained compared with untreated sake lees hydrolysate.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Chen, H. Zhang, Y. Miao, M. Jiang and J. Chen, "Enhanced Succinic Acid Production from Sake Lees Hydrolysate by Dilute Sulfuric Acid Pretreatment and Biotin Supplementation," Journal of Sustainable Bioenergy Systems, Vol. 2 No. 2, 2012, pp. 19-25. doi: 10.4236/jsbs.2012.22003.

References

[1] J. G. Zeikus, M. K. Jain and P. Elankovan, “Biotechnology of Succinic Acid Production and Markets for Derived Industrial Products,” Applied Microbiology and Biotechnology, Vol. 51, No. 5, 1999, pp. 545-552. doi:10.1007/s002530051431
[2] I. Bechthold, K. Bretz, S. Kabasci and R. Kopitzky, “Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources,” Chemical Engineering & Technology, Vol. 31, No. 5, 2008, pp. 647-654. doi:10.1002/ceat.200800063
[3] J. B. McKinlay, C. Vieille and J. G. Zeikus, “Prospects for a Bio-Based Succinate Industry,” Applied Microbiology and Biotechnology, Vol. 76, No. 4, 2007, pp. 727-740.
[4] H. Song and S. Y. Lee, “Production of Succinic Acid by Bacterial Fermentation,” Enzyme and Microbial Technology, Vol. 39, No. 3, 2006, pp. 352-361. doi:10.1016/j.enzmictec.2005.11.043
[5] P. C. Lee, S. Y. Lee, S. H. Hong and H. N. Chang, “Isolation and Characterization of a New Succinic Acid-Producing Bacterium, Mannheimia Succiniciproducens MBEL55E, from Bovine Rumen,” Applied Microbiology and Biotechnology, Vol. 58, No. 5, 2002, pp. 663-668. doi:10.1007/s00253-002-0935-6
[6] H. Song, T.Y. Kim, B. Choi, S. J. Choi, L. K. Nielsen, H. N. Chang and S. Y. Lee, “Development of Chemically Defined Medium for Mannheimia Succiniciproducens Based on Its Genome Sequence,” Applied Microbiology and Biotechnology, Vol. 79, No. 2, 2008, pp. 263-272. doi:10.1007/s00253-008-1425-2
[7] M. V. Guettler, D. Rumler and M. K. Jain, “Actinobacillus succinogenes sp. nov., a Novel Succinic-Acid-Producing Strain from the Bovine Rumen,” International Journal of Systematic and Evolutionary Microbiology, Vol. 49, No. 1, 1999, pp. 207-216. doi:10.1099/00207713-49-1-207
[8] M. J. Van Der Werf, M. V. Guettler, M. K. Jain and J. G. Zeikus, “Environmental and Physiological Factors Affecting the Succinate Product Ratio during Carbohydrate Fermentation by Actinobacillus sp. 130Z,” Archives of Microbiology, Vol. 167, No. 6, 1997, pp. 332-342. doi:10.1007/s002030050452
[9] P. C. Lee, S. Y. Lee, S. H. Hong, H. N. Chang and S. C. Park, “Biological Conversion of Wood Hydrolysate to Succinic Acid by Anaerobiospirillum succiniciproducens,” Biotechnology Letters, Vol. 25, No. 2, 2003, pp. 111-114. doi:10.1023/A:1021907116361
[10] I. Meynial-Salles, S. Dorotyn and P. Soucaille, “A New Process for the Continuous Production of Succinic Acid from Glucose at High Yield, Titer, and Productivity,” Biotechnology and Bioengineering, Vol. 99, No. 1, 2008, pp. 129-135. doi:10.1002/bit.21521
[11] D. B. Hodge, C. Andersson, K. A. Berglund and U. Rova, “Detoxification Requirements for Bioconversion of Softwood Dilute Acid Hydrolyzates to Succinic Acid,” Enzyme and Microbial Technology, Vol. 44, No. 5, 2009, pp. 309-316. doi:10.1016/j.enzmictec.2008.11.007
[12] M. Jiang, S. W. Liu, J. F. Ma, K. Q. Chen, L. Yu, F. F. Yue, B. Xu and P. Wei, “Effect of Growth Phase Feeding Strategies on Succinate Production by Metabolically Engineered Escherichia coli,” Applied and Environmental Microbiology, Vol. 76, No. 4, 2010, pp. 1298-1300. doi:10.1128/AEM.02190-09
[13] Y. Saito, K. Wanezaki, A. Kawato and S. Imayasu, “Structure and Activity of Angiotensin I Converting Enzyme Inhibitory Peptides from Sake and Sake Lees,” Bioscience, Biotechnology, and Biochemistry, Vol. 58, No. 10, 1994, pp. 1767-1771. doi:10.1271/bbb.58.1767
[14] J. J. Beauprez, M. De Mey and W. K. Soetaert, “Microbial Succinic Acid Production: Natural Versus Metabolic Engineered Producers,” Process Biochemistry, Vol. 45, No. 6, 2010, pp. 1103-1114. doi:10.1016/j.procbio.2010.03.035
[15] C. X. Wan, Y. B. Li, A. Shahbazi and S. N. Xiu, “Succinic acid Production from Cheese Whey Using Actinobacillus succinogenes 130 Z,” Applied Biochemistry and Biotechnology, Vol. 145, No. 1-3, 2008, pp. 111-119. doi:10.1007/s12010-007-8031-0
[16] Y. P. Liu, P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong and L. L. Zhu, “Economical Succinic Acid Production from Cane Molasses by Actinobacillus succinogenes,” Bioresource Technology, Vol. 99, No. 6, 2008, pp. 1736-1742. doi:10.1016/j.biortech.2007.03.044
[17] P. Zheng, J. J. Dong, Z. H. Sun, Y. Ni and L. Fang, “Fermentative Production of Succinic Acid from Straw Hydrolysate by Actinobacillus succinogenes.,” Bioresource Technology, Vol. 100, No. 8, 2009, pp. 2425-2429. doi:10.1016/j.biortech.2008.11.043
[18] Q. Li, M. H. Yang, D. Wang, W. L. Li, Y. Wu, Y. J. Zhang, J. M. Xing and Z. G. Su, “Efficient Conversion of Crop Stalk Wastes into Succinic Acid Production by Actinobacillus succinogenes.,” Bioresource Technology, Vol. 101, No. 9, 2010, pp. 3292-3295. doi:10.1016/j.biortech.2009.12.064
[19] J. Yu, Z. M. Li, Q. Ye, Y. Yang and S. L. Chen, “Development of Succinic Acid Production from Corncob Hydrolysate by Actinobacillus succinogenes,” Journal of Industrial Microbiology and Biotechnology, Vol. 37, No. 10, 2010, pp. 1033-1040. doi:10.1007/s10295-010-0750-5
[20] J. B. McKinlay, J. G. Zeikus and C. Vieille, “Insights into Actinobacillus succinogenes Fermentative Metabolism in a Chemically Defined Growth Medium,” Applied and Environmental Microbiology, Vol. 71, No. 11, 2005, pp. 6651-6656. doi:10.1128/AEM.71.11.6651-6656.2005
[21] N. Tsutsui, Y. Yamamoto and K. Iwami, “Protein-Nutritive Assessment of Sake Lees Obtained by Brewing from Liquefied Rice,” Journal of Nutritional Science and Vitaminology, Vol. 4, No. 1, 1998, pp. 177-186. doi:10.3177/jnsv.44.177
[22] K. Q. Chen, H. Zhang, Y. L. Miao, M. Jiang and J. Y. Chen, “Succinic Acid Production from Enzymatic Hydrolysate of Sake Lees Using Actinobacillus succinogenes 130Z,” Enzyme and Microbial Technology, Vol. 47, No. 5, 2010, pp. 236-240. doi:10.1016/j.enzmictec.2010.06.011
[23] AOAC International, “Official Methods of Analysis Method 988.05,” Gaithersburg, 1999.
[24] Y. P. Liu, P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong and P. Wei, “Strategies of pH Control and Glucose-Fed Batch Fermentation for Production of Succinic Acid by Actinobacillus succinogenes CGMCC1593,” Journal of Chemical Technology & Biotechnology, Vol. 83, No. 5, 2008, pp. 722-729. doi:10.1002/jctb.1862
[25] T. Roukas, “Pretreatment of Beet Molasses to Increase Pullulan Production,” Process Biochemistry, Vol. 33, No. 8, 1998, pp. 805-810. doi:10.1016/S0032-9592(98)00048-X
[26] H. J. Jeon, M. Noda, M. Maruyama, Y. Matoba, T. Kumagai and M. Sugiyama, “Identification and Kinetic Study of Tyrosinase Inhibitors Found in Sake Lees,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 26, pp. 9827-9833.
[27] S. Okino, R. Noburyu, M. Suda, T. Jojima, M. Inui and H. Yukawa, “An Efficient Succinic Acid Production Process in a Metabolically Engineered Corynebacterium glutamicum Strain,” Applied Microbiology and Biotechnology, Vol. 81, No. 3, 2008, pp. 459-464. doi:10.1007/s00253-008-1668-y
[28] N. P. Nghiem, B. H. Davison, J. E. Thompson, B. E. Suttle and G. R. Richardson, “The Effect of Biotin on the Production of Succinic Acid by Anaerobiospirillum succiniciproducens,” Applied Biochemistry and Biotechnology, Vol. 57-58, No. 1, 1996, pp. 633-638. doi:10.1007/BF02941744
[29] K. Q. Chen, J. Li, J. F. Ma, M. Jiang, P. Wei, Z. M. Liu and H. J. Ying, “Succinic Acid Production by Actinobacillus succinogenes using hydrolysates of Spent Yeast Cells and Corn Fiber,” Bioresource Technology, Vol. 160, No. 1, 2010, pp. 244-254.
[30] R. J. McMahon, “Biotin in Metabolism and Molecular Biology,” Annual Review of Nutrition, Vol. 22, No. 4, 2002, pp. 221-239. doi:10.1146/annurev.nutr.22.121101.112819

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.