Share This Article:

The analysis of microscopy imaging on liquid crystalline components of the cell nucleus

Abstract Full-Text HTML XML Download Download as PDF (Size:722KB) PP. 307-314
DOI: 10.4236/jbise.2012.56040    3,363 Downloads   5,413 Views   Citations

ABSTRACT

Dinoflagellates nuclei allow for liquid crystalline characterization without core histones. In this study, nuclei were isolated from the athecate Karenia dinoflagellate species with minimum destruction to their native structure during preparation procedures. The liquid crystalline nuclei were studied by microscopy techniques of Metripol birefringence microscopy, Confocal Laser Scanning Microscopy (CLSM) and synchrotron radiation-based hard X-ray Microscopy with computed tomography, respectively. The 3D reconstruction techniques of hard X-ray tomography and CLSM were also discussed. The important biophysical parameters of the interspaces between chromosomes, nuclear surface areas and chromosome-occupied volumes were calculated from a 3D rendering of a reconstructed nucleus. The results of calculated average chromosomal DNA concentration of dinoflagellate was consistent with the concentration which can spontaneously assemble into the cholesteric liquid crystal phase in vitro.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sun, S. , Liu, M. , Dai, Q. , Dong, F. , Liu, L. and Huo, T. (2012) The analysis of microscopy imaging on liquid crystalline components of the cell nucleus. Journal of Biomedical Science and Engineering, 5, 307-314. doi: 10.4236/jbise.2012.56040.

References

[1] Raska, I., Shaw, P.J. and Cmarko, D. (2006) Structure and function of the nucleolus in the spotlight. Current Opinion in Cell Biology, 18, 325-334. doi:10.1016/j.ceb.2006.04.008
[2] Hancock, R. (2004) A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. Journal of Structural Biology, 146, 281-290. doi:10.1016/j.jsb.2003.12.008
[3] Marenduzzo, D., Finan, K. and Cook, P.R. (2006) The depletion attraction: An underappreciated force driving cellular organization. Journal of Cell Biology, 175, 681- 686. doi:10.1083/jcb.200609066
[4] Hancock, R. (2008) Self-association of polynucleosome chains by macromolecular crowding. European Biophysics Journal with Biophysics Letters, 37, 1059-1064. doi:10.1007/s00249-008-0276-1
[5] Richter, K., Nessling, M. and Lichter, P. (2007) Ex- perimental evidence for the influence of molecular crowding on nuclear architecture. Journal of Cell Science, 120, 1673-1680. doi:10.1242/jcs.03440
[6] Pinto, M.F.V., Moran, M.C., Miguel, M.G., et al. (2009) Controlling the Morphology in DNA Condensation and Precipitation. Biomacromolecules, 10, 1319-1323. doi:10.1021/bm900211j
[7] Hancock, R. (2007) Packing of the polynucleosome chain in interphase chromosomes: Evidence for a contribution of crowding and entropic forces. Seminars in Cell & Developmental Biology, 18, 668-675. doi:10.1016/j.semcdb.2007.08.006
[8] Daban, J.R. (2000) Physical constraints in the condensation of eukaryotic chromosomes. Local concentration of DNA versus linear packing ratio in higher order chromatin structures. Biochemistry, 39, 3861-3866. doi:10.1021/bi992628w
[9] Minsky, A., Ghirlando, R. and Reich, Z. (1997) Nucleosomes: A solution to a crowded intracellular environment? Journal of Theoretical Biology, 188, 379-385. doi:10.1006/jtbi.1997.0525
[10] Reyes-Larnothe, R., Wang, X.D. and Sherratt, D. (2008) Escherichia coli and its chromosome. Trends in Microbiology, 16, 238-245. doi:10.1016/j.tim.2008.02.003
[11] Chow, M.H., Yan, K.T., Bennett, M.J., et al. (2010) Birefringence and DNA condensation of liquid crystalline chromosomes. Eukaryot Cell, 9, 1577-1587. doi:10.1128/EC.00026-10
[12] Huang, B., Bates, M. and Zhuang, X.W. (2009) Super-resolution fluorescence microscopy. Annual Review of Biochemistry, 78, 993-1016. doi:10.1146/annurev.biochem.77.061906.092014
[13] Pawley, J.B. (2006) Handbook of Biological Confocal Microscopy. 3rd Edition, Springer, New York. doi:10.1007/978-0-387-45524-2
[14] Petibois, C. (2010) Imaging methods for elemental, chemical, molecular, and morphological analyses of single cells. Analytical and Bioanalytical Chemistry, 397, 2051- 2065. doi:10.1007/s00216-010-3618-7
[15] Wildanger, D., Medda, R., Kastrup, L. et al. (2009) A compact STED microscope providing 3D nanoscale resolution. Journal of Microscopy-Oxford, 236, 35-43. doi:10.1111/j.1365-2818.2009.03188.x
[16] Parkinson, D.Y., Mcdermott, G., Etkin, L.D., et al. (2008) Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. Journal of Structural Biology, 162, 380-386. doi:10.1016/j.jsb.2008.02.003
[17] Huang, X., Nelson, J., Kirz, J., et al. (2009) Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Physical Review Letters, 103, Article ID: 198101. doi:10.1103/PhysRevLett.103.198101
[18] Mcdermott, G., Le Gros, M.A., Knoechel, C.G., et al. (2009) Soft X-ray tomography and cryogenic light microscopy: The cool combination in cellular imaging. Trends in Cell Biology, 19, 587-595. doi:10.1016/j.tcb.2009.08.005
[19] Larabell, C.A. and Le Gros, M.A. (2004) X-ray tomography generates 3-D reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution. Molecular Biology of the Cell, 15, 957-962. doi:10.1091/mbc.E03-07-0522
[20] Carrascosa, J.L., Chichon, F.J., Pereiro, E., et al. (2009) Cryo-X-ray tomography of vaccinia virus membranes and inner compartments. Journal of Structural Biology, 168, 234-239. doi:10.1016/j.jsb.2009.07.009
[21] Lima, E., Wiegart, L., Pernot, P., et al. (2009) Cryogenic X-ray diffraction microscopy for biological samples. Physical Review Letters, 103, Article ID: 198102. doi:10.1103/PhysRevLett.103.198102
[22] Miao, J.W., Hodgson, K.O., Ishikawa, T., et al. (2003) Imaging whole Escherichia coli bacteria by using single-particle X-ray diffraction. Proceedings of the National Academy of Sciences of the United States of America, 100, 110-112. doi:10.1073/pnas.232691299
[23] Nishino, Y., Takahashi, Y., Imamoto, N., et al. (2009) Three-dimensional visualization of a human chromosome using coherent X-Ray diffraction. Physical Review Letters, 102, Article ID: 018101. doi:10.1103/PhysRevLett.102.018101
[24] Weiss, D., Schneider, G., Niemann, B., et al. (2000) Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicros-copy, 84, 185-197. doi:10.1016/S0304-3991(00)00034-6
[25] Susini, J. (2005) Synchrotron based X-ray microscopy and micro-spectroscopy: multidisciplinary tools. Microscopy and Microanalysis, 11, 678-679. doi:10.1017/S143192760550271X
[26] Baruchel, J., Bleuet, P., Bravin, A., et al. (2008) Ad-vances in synchrotron hard X-ray based imaging. Comptes Rendus Physique, 9, 624-641. doi:10.1016/j.crhy.2007.08.003
[27] Howells, M.R., Beetz, T., Chapman, H.N., et al. (2009) An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. Journal of Electron Spectroscopy and Related Phenomena, 170, 4-12. doi:10.1016/j.elspec.2008.10.008
[28] Chao, W.L., Harteneck, B.D., Liddle, J.A., et al. (2005) Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435, 1210-1213. doi:10.1038/nature03719
[29] Tian, Y.C., Li, W.J., Chen, J., et al. (2008) High resolution hard X-ray microscope on a second generation synchrotron source. Review of Scientific Instruments, 79, Article ID: 103708. doi:10.1063/1.3002484
[30] Zeng, X.H., Duewer, F., Feser, M., et al. (2008) Ellipsoidal and parabolic glass capillaries as condensers for X-ray microscopes. Applied Optics, 47, 2376-2381. doi:10.1364/AO.47.002376
[31] Rehbein, S., Heim, S., Guttmann, P., et al. (2009) Ultra-high-resolution soft-X-ray microscopy with zone plates in high orders of diffraction. Physical Review Letters, 103, Article ID: 110801. doi:10.1103/PhysRevLett.103.110801
[32] Rizzo, P.J. (2003) Those amazing dinoflagellate chromosomes. Cell Research, 13, 215-217. doi:10.1038/sj.cr.7290166
[33] Wargo, M.J. and Rizzo, P.J. (2000) Characterization of Gymnodinium mikimotoi (dinophyceae) nuclei and identification of the major histone-like protein, HGm. Journal of Phycology, 36, 584-589. doi:10.1046/j.1529-8817.2000.99122.x
[34] Levi-Setti, R., Gavrilov, K.L. and Rizzo, P.J. (2008) Divalent cation distribution in dinoflagellate chromosomes imaged by high-resolution ion probe mass spectrometry. European Journal of Cell Biology, 87, 963-976. doi:10.1016/j.ejcb.2008.06.002
[35] Yeung, P.K.K., Hung, V.K.L., Chan, F.K.C., et al. (2005) Characterization of a Karenia papilionacea-like dinoflagellate from the South China Sea. Journal of the Marine Biological Association of the United Kingdom, 85, 779-781. doi:10.1017/S0025315405011690
[36] Geday, M.A., Kaminsky, W., Lewis, J.G., et al. (2000) Images of absolute retardance L center dot Delta n, using the rotating polariser method. Journal of Micros-copy-Oxford, 198, 1-9. doi:10.1046/j.1365-2818.2000.00687.x
[37] Chen, J., Wu, C.Y., Tian, J.P., et al. (2008) Three- dimensional imaging of a complex concaved cuboctahedron copper sulfide crystal by X-ray nanotomography. Applied Physics Letters, 92, Article ID: 233104. doi:10.1063/1.2943337
[38] Li, W.J., Wang, N., Chen, J., et al. (2009) Quantitative study of interior nanostructure in hollow zinc oxide particles on the basis of nondestructive X-ray nanotomo-graphy. Applied Physics Letters, 95, Article ID: 053108. doi:10.1063/1.3196250
[39] Livolant, F. and Leforestier, A. (1996) Condensed phases of DNA: Structures and phase transitions. Progress in Polymer Science, 21, 1115-1164. doi:10.1016/S0079-6700(96)00016-0
[40] Gu, W.W., Etkin, L.D., Le Gro, M.A., et al. (2007) X-ray tomography of Schizosaccharomyces pombe. Differentiation, 75, 529-535. doi:10.1111/j.1432-0436.2007.00180.x
[41] Daban, J.R. (2003) High concentration of DNA in condensed chromatin. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 81, 91-99.
[42] Yashiro, W., Takeda, Y., Takeuchi, A., et al. (2009) Hard-X-ray phase-difference microscopy using a fresnel zone plate and a transmission grating. Physical Review Letters, 103, Article ID: 180801. doi:10.1103/PhysRevLett.103.180801

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.