Share This Article:

Surface Modification of Waste Tire by Grafting with Styrene and Maleic Anhydride

Abstract Full-Text HTML XML Download Download as PDF (Size:816KB) PP. 70-76
DOI: 10.4236/ojpchem.2012.22009    4,218 Downloads   8,783 Views   Citations

ABSTRACT

Waste tire powder, as waste rubber WR was subjected to grafting with styrene (St) and maleic anhydride (MA). Hydrogen peroxide H2O2 was used to initiate the free radical copolymerization of St onto WR. A thermal initiation was used in case of grafting of MA onto WR. Effect of initiator and monomer concentrations together with the influence of reaction temperature and reaction time were investigated. The grafting was estimated by weight, and the grafted copolymers were characterized by FT/IR, DSC and SEM to prove the grafting. It has found that the grafting increases with increase monomer and initiator concentrations. The increase in the reaction temperature and time also causes increasing levels of the grafted St and MA.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Aggour, A. Al-Shihri and M. Bazzt, "Surface Modification of Waste Tire by Grafting with Styrene and Maleic Anhydride," Open Journal of Polymer Chemistry, Vol. 2 No. 2, 2012, pp. 70-76. doi: 10.4236/ojpchem.2012.22009.

References

[1] Y. A. Aggour, A. S. Al-Shihri and M. R. Bazzt, “Recycling of Vulcanized Waste Rubber through Halogenations and Amination Chemical Reactions,” WIT Transaction on Ecology & Environment WIT Press, Vol. 120, 2009, pp. 875-883.
[2] K. I. Lee and S. H. Ryu, “Ultraviolet Photo Grafting Reaction of Acrylamide onto Styrene-Butadiene Rubber,” Elastomers, Vol. 33, No. 4, 1998, p. 363.
[3] J. J. Yu and S. H. Ryu, “Ultraviolet-Initiated Photo Grafting of Glycidyl Methacrylate onto Styrene-Butadiene Rub- ber,” Journal of Applied Polymer Science, Vol. 73, No. 9, 1994, pp. 1733-1739. doi:10.1002/(SICI)1097-4628(19990829)73:9<1733::AID-APP14>3.0.CO;2-J
[4] F. Cataldo, O. Ursini and G. Angelini, “Surface Oxidation of Rubber Crumb with Ozone,” Polymer Degradation and Stability, Vol. 95, No. 5, 2010, pp. 803-810. doi:10.1016/j.polymdegradstab.2010.02.003
[5] S. L. Zheng, Z. X. Zheng, K. Pal, Z. X. Xin, J. Suh and J. K. Kim, “Prediction of Mechanical Properties of Waste Polypropylene/Waste Ground Tire Powder Blends Using Artificial Neutral Networks,” Material & Design, Vol. 31 No. 8, 2010, pp. 3624-3629. doi:10.1016/j.matdes.2010.02.039
[6] C. T. Torrado, M. A. Franco, C. F. Gonzalez, M. A. Domingues and V. G. Serrano, “Development of Adsor- bents from Used Tires Rubber, Their Uses in the Adsorption of Organic and Inorganic Solutes in Aqueous Solution,” Fuel Processing Technology, Vol. 92, No. 2, 2011, pp. 206-212.
[7] C. Geismann and M. Ulbricht, “Photoreactive Functionalization of Poly(Ethylene Terphthalate) Trak-Etched Pore Surfaces with Smart Polymer Systems,” Macromolecular Chemistry and Physics, Vol. 206, No. 2, 2005, pp. 268- 281. doi:10.1002/macp.200400374
[8] Y. A. Aggour, A. S. Al-Shihri and M. R. Bazzt, “Chemical Modification of Scraped Tires through Grafting with AMPS,” 2012, in press.
[9] J. Cha and J. L. White, “Styrene Grafting onto a Polyolefin in an Internal Mixer and Twin-Screw Extruder,” Polymer Engineering Science, Vol. 41, No. 7, 2001, pp. 1238-1250. doi:10.1002/pen.10825
[10] T. Rager, “Pre-Irradiation Grafting of Styrene/divinyl- benze onto PTFE Co-Hexafluropropylene from Non- Solvents” Helvetica Chemica Acta, Vol. 86, No. 6, 2003, pp. 1966-1981.
[11] S. Coiai, E. Passaglia and F. Ciardell, “Gradient Density Grafted Polymers on Ground Tire Rubber Particles by Atom Transfer Radical Polymerization,” Macromolecular Chemistry and Physics, Vol. 207, No. 4, 2005, pp. 2289- 2298. doi:10.1002/macp.200600376
[12] J. L. Zhang, X. H. Chen, C. M. Ke, Y. Zhou, H. Z. Lu and D. L. Wang, “Graft Polymerization of Styrene onto Waste Rubber Powder and Surface Characterization of Graft Copolymer,” Polymer Bulletin, Vol. 68, No. 3, 2012, pp. 789-801. doi:10.1007/s00289-011-0586-9
[13] N. Pukkate, Y. Yamamoto and S. Kawahara, “Mechanism of Graft Copolymerization of Styrene onto Deproteinized Natural Rubber,” Colloid Polymer Science, Vol. 286, No. 4, 2008, pp. 441-416. doi:10.1007/s00396-007-1787-5
[14] S. Newman, “Rubber Modification of Plastics,” In: D. R. Paul and S. Newman, Eds., Polymer Blend, Academic Press, New York, Vol. 2, 1978, p. 63
[15] J. P. Deng, W. T. Yang and B. Ranby, “Melt-Photo- grafting Polymerization of Maleic Anhydride onto LDPE Film,” European Polymer Journal, Vol. 38, No. 7, 2002, pp. 1449-1455. doi:10.1016/S0014-3057(02)00004-6
[16] J. P. Deng and W. T. Yang, “Surface Photo-Grafting Polymerization of Vinyl Acetate Malic Anhydride and Their Charge-Transfer Complex IV. MA,” Journal of Applied Polymer Science, Vol. 87, No. 14, 2003, pp. 2318-2325. doi:10.1002/app.11734
[17] E. Carone, U. Kipcak Jr, M. C. Goncalves and S. P. Nunes, “In Situ Compatibilization of Polyamide 6/Natural Rubber Blends with Maleic Anhydride,” Polymer, Vol. 41, No. 15, 2000, pp. 5929-5935. doi:10.1016/S0032-3861(99)00800-9
[18] C. Nakason, A. Kaesaman, Z. Samoh, S. Homsin and S. Kitkamjonwong, “Rheological Properties of Maleated Natural Rubber and Its Blends,” Polymer Testing, Vol. 21, No. 4, 2002, pp. 449-455. doi:10.1016/S0142-9418(01)00109-X
[19] C. Nakason, A. Kaesaman, S. Homsin and S. Kiatkamjonwong, “Rheological and Curing Behavior of Reactive Blending, Maleated Natural Rubber Cassava Starch,” Journal of Applied Polymer Science, Vol. 81, No. 11, 2001, pp. 2803-2813. doi:10.1002/app.1728
[20] M. Saedan, T. Navarat and A. Sobmbat, “Grafting of Maleic Anhydride on Natural Rubber Molecules in a Molten State,” The National Research Council of Thailand, Bangkok, 1997.
[21] C. Nakason, A. Kaesaman and P. Supasanthitikul, “The Grafting of Maleic Anhydride onto Natural Rubber,” Polymer Testing, Vol. 23, No. 1, 2004, pp. 35-41. doi:10.1016/S0142-9418(03)00059-X
[22] F. M. B. Coutinho and M. I. P. Ferreira, “Characterization of EPDM Rubber Modified with Maleic Anhydride by Diffuse Reflective FTIR,” Polymer Testing, Vo. 13, No. 1, 1994, pp. 25-34. doi:10.1016/0142-9418(94)90037-X
[23] Y. A. Aggour, G. Bekhat and A. M. Atia, “Copolymerization and Thermal Investigation of AMPS with Acrylonitrile,” Journal of Polymer Materials, Vol. 17, No. , 2000, p. 193.
[24] J. Deng and W. Yong, “Grafting Copolymerization of Styrene and Maleic Anhydride Binary Monomer System Induced by UV Irradiation,” European Polymer Journal, Vol. 41, No. 11, 2005, pp. 2658-2692. doi:10.1016/j.eurpolymj.2005.05.022
[25] Y. A. Aggour, “Modification of Polystyrene Properties through N-vinylcarboxamido-2-methylpropane Sulfonic Acid Monomer,” Polymer International, Vol. 53, No. 12, 2004, pp. 1930-1935. doi:10.1002/pi.999
[26] Z. G. Shen, H.-M. Li, H.-B. Chen and S. G. Lin, “Preparation and Characterization of MA functionalized Syndiotactic Polystyrene,” Polymer, Vol. 43, No. 20, 2002, pp. 5455-5461.
[27] L. J. Bellamy, “The Infrared Spectra of Complex Molecules,” Wiley, New York, 1964.
[28] F. Chen and J. Quian, “Studies of the Thermal Degradation of Waste Rubber,” Waste Management, Vol. 23, No. 6, 2003, pp. 463-467.
[29] G. S. Miguel, J. Aguodo, D. P. Serrano and J. M. Escola, “Thermal and Catalytic Conversion of Used Tyre Rubber and Its Polymeric Constituents Using Py-GC/MS,” Applied Catalysis B: Environmental, Vol. 64, No. 3-4, 2006, pp. 209-219.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.