PEBAXTM-Silanized Al2O3Composite. Synthesis and Characterization

Abstract

Alumina nanoparticles were dispersed in poly(amide 12-b-tetramethylene oxide) copolymer through extrusion. The alumina particles were functionalized with 3-(2 trimethoxysilylethyl) cyclohexene oxide. The following PEBAX TM/ Al2O 3 proportions were prepared: 0.1, 1.0, 5.0, and 10.0% w/w. The thermal stabiity of the nanocomposites was evalu- ated by thermograviemtric analysis under N2 and was comparable to the neat PEBAXTM polymer. The thermo-oxidative degradation of the polymeric matrix by oxygen was strongly hindered by the functionalized alumina. The rule of mixture would predict that the thermal degradation should be strongly dominated by PEBAXTM matrix. Therefore, the physical mixture of PEBAXTM and silanized alumina should be almost as stable as pure PEBAXTM. However, the experimental results suggest that the nanocomposites are more stable than the mixture of their components. This stabilization effect is evident in the temperature range between 300?C and 400?C, in which the degradation of the PA12 block takes place.

Share and Cite:

J. Lara-Estévez, L. Prado, K. Schulte and E. Bucio, "PEBAXTM-Silanized Al2O3Composite. Synthesis and Characterization," Open Journal of Polymer Chemistry, Vol. 2 No. 2, 2012, pp. 63-69. doi: 10.4236/ojpchem.2012.22008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Amerio, P. Fabbri, G. Malucelli, M. Messori, M. Sangermano and R. Taurino, “Scratch Resistance of Nano-Silica Reinforced Acrylic Coatings,” Progress in Organic Coatings, Vol. 62, No. 2, 2008, pp. 129-133. doi:10.1016/j.porgcoat.2007.10.003
[2] C. Sanchez, B. Julian, P. Belleville and M. Popall, “Applications of Hybrid Organic-Inorganic Nanocom- posites,” Journal of Materials Chemistry, Vol. 15, No. 35-36, 2005, pp. 3559-3592. doi:10.1039/b509097k
[3] F. Mammeri, E. Le Bourhis, L. Rozes and C. Sanchez, “Mechanical Properties of Hybrid Organic-Inorganic Materials,” Journal of Materials Chemistry, Vol. 15, No. 35-36, 2005, pp. 3787-3811. doi:10.1039/b507309j
[4] N. M. Jose and L. A. S. A. Prado, “Hybrid Organic- Inorganic Materials: Preparation and Some Applications,” Quimica Nova, Vol. 28, No. 2, 2005, pp. 281-288.
[5] T. Ogoshi and Y. Chujo, “Organic-Inorganic Polymer Hybrids Prepared by the Sol-Gel Method,” Composite Interfaces, Vol. 11, No. 8-9, 2005, PP. 539-566.
[6] S. Bredeau, S. Peeterbroeck, D. Bonduel, M. Alexandre and P Dubois, “From Carbon Nanotube Coatings to High-Performance Polymer Nanocomposites,” Polymer International, Vol. 57, No. 4, 2008, pp. 547-667. doi:10.1002/pi.2375
[7] B. Chen, J. R. G. Evans, H. C. Greenwell, P. Boulet, P. V. Coveney, A. A. Bowden and A. Whiting, “A Critical Appraisal of Polymer-Clay Nanocomposites,” Chemical Society Reviews, Vol. 37, No. 3, 2008, pp. 568-594. doi:10.1039/b702653f
[8] A. J. Crosby and J. Y. Lee, “Polymer Nanocomposites: The ‘Nano’ Effect on Mechanical Properties,” Polymer Reviews, Vol. 47, No. 2, 2007, pp. 217-229. doi:10.1080/15583720701271278
[9] A. M. Herring, “Inorganic-Polymer Composite Mem- branes for Proton Exchange Membrane Fuel Cells,” Polymer Reviews, Vol. 46, No. 3, 2006, pp. 245-296.
[10] A. C. C. Esteves, A. Barros-Timmons and T. Trindade, “Polymer Based Nanocomposites: Synthetic Strategies for Hybrid Materials,” Química Nova, Vol. 27, No. 5, 2004, pp. 798-806. doi:10.1590/S0100-40422004000500020
[11] H. L. Cong, M. Radosz, B. F. Towler and Y. Q. Shen, “Polymer-Inorganic Nanocomposite Membranes for Gas Separation,” Separation and Purification Technology, Vol. 55, No. 3, 2007, pp. 281-291. doi:10.1016/j.seppur.2006.12.017
[12] N. W. DeLucca and Y. A. Elabd, “Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review,” Journal of Polymer Science and Physics, Vol. 44, No. 16, 2006, pp. 2201-2225. doi:10.1002/polb.20861
[13] S. Anilkumar, M. G. Kumaran and S. Thomas, “Charac- terization of EVA/Clay Nanocomposite Membranes and Its Pervaporation Performance,” Journal of Physical Chemistry B, Vol. 112, No. 13, 2008, pp. 4009-4015. doi:10.1021/jp7096444
[14] M. L. Sforca, I. V. P. Yoshida, C. P. Borges and S. P. Nunes, “Hybrid Membranes Based on SiO2/Polyether- b-polyamide: Morphology and Applications,” Journal of Applied Polymer Science, Vol. 82, No. 3, 2001, pp. 178-185. doi:10.1002/app.1837
[15] C. F. Canto, E. Radovanovic, L. A. S. A. Prado and I. V. P. Yoshida, “Organic-Inorganic Hybrid Materials Derived from Epoxy Resin and Polysiloxanes: Synthesis and Characterization,” Polymer Engineering Science, Vol. 48, No. 1, 2008, pp. 141-148. doi:10.1002/pen.20931
[16] B. Fiedler, F. H. Gojny, M. H. G. Wichmann, M. C. M. Nolte and K. Schulte, “Fundamental Aspects of Nano- Reinforced Composites,” Composites Science and Tech- nology, Vol. 66, No. 16, 2006, pp. 3115-3125. doi:10.1016/j.compscitech.2005.01.014
[17] N. M. Jose, L. A. S. A. Prado and I. V. P. Yoshida, “Synthesis, Characterization, and Permeability Evaluation of Hybrid Organic-Inorganic Films,” Journal of Polymer Science and Physics, Vol. 42, No. 23, 2004, pp. 4281- 4292. doi:10.1002/polb.20292
[18] A. de la Vega Oyervides, J. B. Rios, L. F. R. de Valle, L. A. S. A Prado and K. Schulte, “Peroxide Assisted Coupling and Characterization of Carbon-nanofiber-reinforced Poly(Propylene) Composites,” Macromolecular Materials and Engineering, Vol. 292, No. 10-11, 2007, pp. 1095- 1102. doi:10.1002/mame.200700201
[19] C. S. Karthikyean, L. A. S. A. Prado, S. P. Nunes and K. Schulte, “Impact of Functionalization of Nanoparticles on the Barrier Properties of Ionomernanocomposite Mem- branes for DMFC,” Journal of the Electrochemical Society, Vol. 3, No. 1, 2006, pp. 1297-1301.
[20] M. H. G. Wichmann, M. Cascione, B. Fiedler, M. Quare- simin and K. Schulte, “Influence of Surface Treatment on Mechanical Behaviour of Fumed Silica/Epoxy Resin Nanocomposites,” Composite Interfaces, Vol. 13, No. 8-9, 2006, pp. 699-715. doi:10.1163/156855406779366723
[21] S. Sridhar, R. Suryamurali, B. Smitha and T. M. Aminabhavi, “Development of Crosslinked Poly(Ether- block-amide) Membrane for CO2/CH4 Separation,” Colloids and Surfaces A, Vol. 297, No. 1-3, 2007, pp. 267-274. doi:10.1016/j.colsurfa.2006.10.054
[22] J. C. Chen, X. Feng and A. Penlidis, “Gas Permeation through Poly(Ether-b-amide) (PEBAX 2533) Block Copo- lymer Membranes,” Separation Science and Technology, Vol. 39, No. 1, 2005, pp. 149-164.
[23] R. E. Kesting and A. K. Fritzsche, “Polymeric Gas Sepa- ration Membranes,” Wiley, New York, 1993.
[24] A.Gugliuzza, R. Fabiano, M. G. Garavaglia, A. Spisso and D. Drioli, “Study of the Surface Character as Respon- sible for Controlling Interfacial Forces at Membrane-Feed Interface,” Journal of Colloid Interface Sci-ence, Vol. 303, No. 2, 2006, pp. 388-403. doi:10.1016/j.jcis.2006.07.017
[25] A. Gugliuzza and E. Drioli, “Evaluation of CO2 Per- meation through Functional Assembled Mono-Layers: Relationships between Structure and Transport,” Polymer, Vol. 46, No. 23, 2005, pp. 9994-10003. doi:10.1016/j.polymer.2005.08.011
[26] A. Gugliuzza and E. Drioli, “Role of Additives in the Water Vapor Transport through Block Co-Poly(Amide/ Ether) Membranes: Effects on Surface and Bulk Polymer Properties,” European Polymer Journal, Vol. 40, No. 10, 2004, pp. 2381-2389. doi:10.1016/j.eurpolymj.2004.06.005
[27] Z. F. Wang, B. Wang, N. Qia, X. M. Ding and J. L. Hu, “Free Volume and Water Vapor Permeability Properties in Polyurethane Membranes Studied by Positrons,” Materials Chemiatry and Physics, Vol. 88, No. 1, 2004, pp. 212-216. doi:10.1016/j.matchemphys.2004.07.012
[28] J. P. Sheth, J. Xu and G. L. Wilkes, “Solid State Structure- Property Behavior of Semicrystalline Poly(Ether-block- amide) PEBAX? Thermoplastic Elastomers,” Polymer, Vol. 44, No. 3, 2003, pp. 743-756. doi:10.1016/S0032-3861(02)00798-X
[29] S. Banerjee, G. Maier, C. Dannenberg and J. Spinger, “Gas Permeabilities of Novel Poly(Arylene Ether)s with Terphenyl Unit in the Main Chain,” Journal of Membrane Science, Vol. 229, No. 1-2, 2004, pp. 63-71. doi:10.1016/j.memsci.2003.09.016
[30] G. García-Ayuso, R. Salvarezza, J. M. Martínez-Duart, O. Sánchez and L. Vázques, “Relationship between the Micro- structure and the Water Permeability of Transparent Gas Barrier Coatings,” Surface and Coatings Technology, Vol. 100-101, No. 1-3, 1998, pp. 459-462. doi:10.1016/S0257-8972(97)00671-3
[31] G. H. Hatfield, Y. Guo, W. E. Killinger, R. A. Andrejak and P. M. Roubicek, “Characterization of Structure and Morphology in Two Poly(Ether-block-amide) Copolymers,” Macromolecules, Vol. 26, No. 24, 1993, pp. 6350-6353. doi:10.1021/ma00076a008
[32] M. L. Di Lorenzo, M. Pyda and B. Wunderlich, “Calorimetry of Nanophase-Separated Poly(Oligoamide-alt-oligoether)s,” Journal of Polymer Science Physiics, Vol. 39, No. 14, 2001, pp. 1594-1604. doi:10.1002/polb.1131
[33] E. V. Konyukhova, A. I. Buzin and Y. K. Godovsky, “Melting of Polyether Block Amide (Pebax): The Effect of Stretching,” Thermochimica Acta, Vol. 391, No. 1-2, 2002, pp.271-277. doi:10.1016/S0040-6031(02)00189-2
[34] C..S. Karthikeyan, L. A. S. A. Prado, M. L. Ponce, H. Silva, B. Ruffmann, K. Schulte and S. P. Nunes, “Polymer Nanocomposite Membranes for DMFC Application,” Journal of Membrane Science, Vol. 254, No. 1-2, 2005, pp. 139-146.
[35] R. A. Zoppi and C. G. A. Soares, “Hybrids of Poly (Ethylene Oxide-b-amide-6) and ZrO2 Sol-Gel: Prepa- ration, Characterization, and Application in Processes of Membranes Separation,” Advances in Polymer Technology, Vol. 21, No. 1, 2002, pp. 2-16. doi:10.1002/adv.10011
[36] R. A. Zoppi, S. das neves and S. P. Nunes, “Hybrid Films of Poly(Ethylene Oxide-b-amide-6) Containing Sol-Gel Silicon or Titanium Oxide as Inorganic Fillers: Effect of Morphology and Mechanical Properties on Gas Per- meability,” Polymer, Vol. 41, No. 14, 2000, pp. 5461- 5470. doi:10.1016/S0032-3861(99)00751-X
[37] J. H. Kim and Y. M. Lee, “Gas Permeation Properties of Poly(Amide-6-b-ethylene Oxide)-Silica Hybrid Mem- branes,” Journal of Membrane Science, Vol. 193, No. 2, 2001, pp. 209-225. doi:10.1016/S0376-7388(01)00514-2
[38] J. F. Feller, D. Langevin and S. Marais, “Influence of Processing Conditions on Sensitivity of Conductive Poly- mer Composites to Organic Solvent Vapours,” Synthetic Metals, Vol. 144, No. 1, 2004, pp. 81-88. doi:10.1016/j.synthmet.2004.02.006
[39] J. F. Feller and Y. Grohens, “Evolution of Electrical Properties of Some Conductive Polymer Composite Textiles with Organic Solvent Vapours Diffusion,” Sensors and Actuators B: Chemical, Vol. 97, No. 2-3, 2004, pp. 231-242.
[40] N. R. Legge, G. Holden and H. E. Schr?der, “Thermoplastic Elastomers,” 2nd Edition, Hanser Publishers, New York, 1996.
[41] A. Kondyurin, P. Volodin and J. Weber, “Plasma Immer- sion Ion Implantation of Pebax Polymer,” Nuclear Instruments and Methods B, Vol. 251, No. 2, 2006, pp. 407- 412. doi:10.1016/j.nimb.2006.06.026
[42] L. A. S. A. Prado, C. S. Karthikeyan, K. Schulte, S. P. Nunes and I. L. Torriani, “Or-ganic Modification of Lay- ered Silicates: Structural and Ther-mal Characterizations,” Journal of Non-Crystalline Solids, Vol. 351, No. 12-13, 2005, pp. 970-975. doi:10.1016/j.jnoncrysol.2004.12.007
[43] L. A. S. A. Prado, E. Radovanovic, H. O. Pastore, I. V. P. Yoshida and I. L. Torriani, “Poly(Phenylsilsesquioxane)s: Structural and Morphological Characterization,” Journal of Polymer Science Polymer Chemistry, Vol. 38, No. 9, 2000, pp. 1580-1589. doi:10.1002/(SICI)1099-0518(20000501)38:9<1580::AID-POLA22>3.0.CO;2-7
[44] G. W. Ehrenstein, G. Riedel and P. Trawiel, “Praxis der Thermischen Analyse von Kunststoffen,” 1st Edition, Hanser, München, 1998.
[45] V. I. Bondar, B. D. Freeman and I. Pinnau, “Gas Sorption and Characterization of Poly(Ether-b-amide) Segmented Block Copolymers,” Journal of Polymer Science Polymer Physics, Vol. 37, No. 17, 1999, pp. 2463-2475. doi:10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H
[46] A. R. Bhattacharyya, S. Bose, A. R. Kulkarni, P. P?tschke, L. H?u?ler, D. Fischer and D. Jehnichen, “Styrene Maleic Anhydride Copolymer Mediated Dispersion of Single Wall Carbon Nanotubes in Polyamide 12: Crys- tallization Behavior and Morphology,” Journal of Applied Polymer Science, Vol. 106, No. 1, 2007, pp. 345-353. doi:10.1002/app.26680
[47] J. Z. Lu, T. W. Doyle and K. Li, “Preparation and Cha- racterization of Wood-(Nylon 12) Composites,” Journal of Applied Polymer Science, Vol. 103, No. 1, 2007, pp. 270-276. doi:10.1002/app.25274
[48] Y. Zhang, J. H. Yang, T. S. Ellis and J. Shi, “Crystal Structures and Their Effects on the Properties of Polyamide 12/Clay and Polyamide 6-Polyamide 66/Clay Nanocomposites,” Journal of Applied Polymer Science, Vol. 100, No. 6, 2006, pp. 4782-4794. doi:10.1002/app.23378
[49] T. McNally, W. R. Murphy, C. Y. Lew, R. J. Turner and G. P. Brennan, “Polyamide-12 Layered Silicate Nanocomposites by Melt Blending,” Polymer, Vol. 44, No. 9, 2003, pp. 2761-2772. doi:10.1016/S0032-3861(03)00170-8
[50] I. Arvanitoyannis and E. Psomiadou, “Composites of Anionic (Co)Polyamides (Nylon 6/Nylon 12) with Short Glass E-Fibers. Preparation and Properties,” Journal of Applied Polymer Science, Vol. 51, No. 11, 1994, pp. 1883-1899. doi:10.1002/app.1994.070511105
[51] S. V. Levchik, E. D. Weil and M. Lewin, “Thermal Decomposition of Aliphatic Nylons,” Polymer International, Vol. 48, No. 7, 1999, pp. 532-557. doi:10.1002/(SICI)1097-0126(199907)48:7<532::AID-PI214>3.0.CO;2-R
[52] J. L. Fan, G. M. Wang and W. H. Ku, “Ni-trile-Containing Imidazole Cured of Novolac Epoxy Resin,” Journal of Applied Polymer Science, Vol. 43, No. 4, 1991, pp. 829- 833. doi:10.1002/app.1991.070430422

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.