Share This Article:

Semi-Quantitative PCR for Quantification of Hepatotoxic Cyanobacteria

Abstract Full-Text HTML Download Download as PDF (Size:388KB) PP. 426-430
DOI: 10.4236/jep.2012.35053    4,358 Downloads   6,830 Views  

ABSTRACT

Blooms of microcystin-producing cyanobacteria are a problem worldwide. Microcystin is a liver hepatotoxin commonly found in bodies of water and is produced mainly by the genus Microcystis. The aim of the present study was to develop and assess a competitive PCR method for the quantification of toxic and non-toxic Microcystis cells using the cpcBA and mcyB genes, which are respectively involved in the formation of phycocyanin and biosynthesis of microcystin. For the acquisition of competitor DNA, amplification sequences were carried out of the “cell DNA equivalent” of microcystin-producing (BCCUSP18) and non-microcystin-producing (BCCUSP03) strains of Microcystis spp. using primers described in the literature as well as others designed for the present study. The method was successfully developed, as competitor DNA was constructed and co-amplified with the target DNA. Competitive PCR proved to be useful in quantifying toxic and non-toxic cells of Microcystis spp. strains, representing a helpful methodology tool to study isolated toxin-producing cyanobacteria.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Gouvêa-Barros and M. do Carmo Bittencourt-Oliveira, "Semi-Quantitative PCR for Quantification of Hepatotoxic Cyanobacteria," Journal of Environmental Protection, Vol. 3 No. 5, 2012, pp. 426-430. doi: 10.4236/jep.2012.35053.

References

[1] W. W. Carmichael, “The Toxins of Cyanobacteria,” Scientific American, Vol. 270, No. 1, 1994, pp. 78-86. doi:10.1038/scientificamerican0194-78
[2] K. Sivonen and G. Jones, “Cyanobacterial Toxins,” In: I. Chorusand and J. Bartram, Eds, Toxic Cyanobacteria in Water: A guide to their Public Health Consequences, Monitoring and Management, Für WHO durch, London (E & FN Spon /Chapman & Hall), 1999, p. 416.
[3] I. Chorus, I. R. Falconer, H. J. Salas and J. Bartram, “Health Risks Caused by Freshwater Cyanobacteria in Recreational Waters,” Journal of Toxicology and Environmental Health, Part B: Critical Reviews, Vol. 3, No. 4, 2000, pp. 323-347. doi:10.1080/109374000436364
[4] E. M. Jochimsen, W. W. Carmichael, J. An, D. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. C. Antunes, D. A. Melo-Filho, M. L. Tereza, V. S. T. Barreto, S. M. F. O. Azevedo and W. R. Jarvis, “Liver Failure and Death After Exposure to Microcystin Toxins at a Hemodialysis Center in Brazil,” The New England Journal of Medicine, Vol. 338, No. 13, 1998, pp. 873-878. doi:10.1056/NEJM199803263381304
[5] Regulation MS 518/2004, “Guidelines for Drinking Water Quality,” Official Law Reports, 26 March 2004, Section I, p. 266.
[6] World Health Organization, “Guideline for Drinking Water Quality,” 2nd Edition, Geneva, 1998, pp. 95-110.
[7] I. Chorus and J. Bartram, “Toxic Cyanobacteria in Water: a Guide to Public Health Significance, Monitoring and Management,” Für WHO durch, London, (E & FN Spon /Chapman & Hall), 1999, p. 416.
[8] C. Bernard, P. Monis and P. Baker, “Disaggregation of Colonies of Microcystis (Cyanobacteria): Efficiency of Two Techniques Assessed Using an Image Analysis System,” Journal of Applied Phycology, Vol. 16, No. 2, 2004, pp. 117-125. doi:10.1023/B:JAPH.0000044774.38561.44
[9] P. D. Siebert and J. M. Larrik, “Competitive PCR,” Nature, Vol. 359, No. 6395, 1992, pp. 557-558. doi:10.1038/359557a0
[10] M. Yoshida, T. Yoshida, Y. Takashima, R. Kondo and S. Hiroishi, “Genetic Diversity of the Toxic Cyanobacterium Microcystis in Lake Mikata,” Environmental Toxicology, Vol. 20, No. 3, 2005, pp. 229-234. doi:10.1002/tox.20102
[11] M. C. Bittencourt-Oliveira, “Detection of Potencial Microcystin-Producing Cyanobacteria in Brazilian Reservoirs with a mcyB Molecular Marker,” Hamful Algae, Vol. 2, No. 1, 2003, pp. 51-60. doi:10.1016/S1568-9883(03)00004-0
[12] M. C. Bittencourt-Oliveira, V. Piccin-Santos and S. Gouvêa-Barros, “Microcystin-Producing Genotypes from Cyanobacteria in Brazilian Reservoirs,” Environmental Toxicology, 2010. doi:10.1002/tox.20659
[13] R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman and R. Y. Stanier, “Generic Assigments, Strain Histories and Properties of Pure Cultures of Cyanobacteria,” Journal of General Microbiology, Vol. 111, No. 1, 1979, pp. 1-61.
[14] M. C. Bittencourt-Oliveira, “Development of Microcystis aeruginosa (Kützing) Kützing (Cyanophyceae/Cyanobacteria) under Cultivation and Taxonomic Implications,” Algological Studies, Vol. 99, 2000, pp. 29-37.
[15] R. R. L. Guillard, “Division Rates,” In: J. R. Stein, Ed., Handbook of Phycological Methods: Culture Methods and Growth Measurements, Cambridge University Press, London, 1973, pp. 289-311.
[16] S. O. Rogers and A. J. Bendich, “Extration of DNA from Milligram Amounts of Fresh Herbarium and Mummified Plant Tissues,” Plant Molecular Biology, Vol. 5, No. 2, 1985, pp. 69-76. doi:10.1007/BF00020088
[17] T. Yoshida, Y. Yuki, S. Lei, H. Chinen, M. Yoshida, R. Kondo and S. Hiroishi, “Quantitative Detection of Toxic Strains of the Cyanobacteria Genus Microcystis by Competitive PCR,” Microbes and Environments, Vol. 18, No. 1, 2003, pp. 16-23. doi:10.1264/jsme2.18.16
[18] B. A. Neilan, D. Jacob and A. E. Goodman, “Genetic Diversity and Phylogeny of Toxic Cyanobacteria Determined by DNA Polymorphisms within the Phycocyanin Locus,” Applied and Environmental Microbiology, Vol. 61, No. 11, 1995, pp. 3875-3883.
[19] J. Al-Tebrineh, M. M. Gehringer, R. Akcaalan and B. A. Neilan, “A New Quantitative PCR Assay for the Detection of Hepatotogenic Cyanobacteria,” Toxicon, Vol. 57, No. 4, 2011, pp. 546-554. doi:10.1016/j.toxicon.2010.12.018
[20] Y. Tanabe, K. Kaya and M. M. Watanabe, “Evidence for Recombination in the Microcystin Synthetase (mcy) Genes of Toxic Cyanobacteria Microcystis spp,” Journal of Molecular Evolution, Vol. 58, No. 6, 2004, pp. 633-641. doi:10.1007/s00239-004-2583-1
[21] T. Kaneko, N. Nakajima, S. Okamoto, I. Suzuki, Y. Tanabe, M. Tamaoki, Y. Nakamura, F. Kasai, A. Watanabe, K. Kawashima, Y. Kishida, A. Ono, Y. Shimizu, C. Takahashi, C. Minami, T. Fujishiro, M. Kohara, M. Katoh, N. Nakazaki, S. Nakayama, M. Yamada, S. Tabata and M. M. Watanabe, “Complete Genomic Structure of the BloomForming Toxic Cyanobacterium Microcystis aeruginosa NIES-843,” DNA Research, Vol. 14, No. 6, 2007, pp. 247-256. doi:10.1093/dnares/dsm026
[22] R. Kurmayer and T. Kutzenberger, “Application of Real-Time PCR for Quantification of Microcystin Genotypes in a Population of the Toxic Cyanobacterium Microcystis spp.,” Applied and Environmental Microbiology, Vol. 69, No. 11, 2003, pp. 6723-6730. doi:10.1128/AEM.69.11.6723-6730.2003
[23] E. Schober, M. Werndl, K. Laakso, I. Korschineck, K. Sivonen and R. Kurmayer, “Interlaboratorial Comparison of Taq Nuclease Assays for the Quantification of the Toxic Cyanobacteria Microcystis sp.,” Journal of Microbiological Methods, Vol. 69, No. 1, 2007, pp. 122-128. doi:10.1016/j.mimet.2006.12.007
[24] J. H. Ha, T. Hidaka and H. Tsuno, “Quantification of Toxic Microcystis and Evaluation of Its Dominance Ratio in Blooms Using Real-Time PCR,” Environmental & Science Technology, Vol. 4, No. 3, 2009, pp. 812-818. doi:10.1021/es801265f

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.