Share This Article:

α-Times Integrated C-Semigroups

Abstract Full-Text HTML Download Download as PDF (Size:213KB) PP. 211-215
DOI: 10.4236/apm.2012.23030    2,636 Downloads   5,405 Views   Citations

ABSTRACT

The α-times integrated C semigroups, α > 0, are introduced and analyzed. The Laplace inverse transformation for α-times integrated C semigroups is obtained, some known results are generalized.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Liu, D. Liao, Q. Zhu and F. Wang, "α-Times Integrated C-Semigroups," Advances in Pure Mathematics, Vol. 2 No. 3, 2012, pp. 211-215. doi: 10.4236/apm.2012.23030.

References

[1] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations,” Springer-Verlag, New York, 1983. doi:10.1007/978-1-4612-5561-1
[2] Q. Zhao, G. T. Zhu and D. X. Feng, “Generalized Operator Semigroup and Well-Posedness of Singular Distributed Parameter Systems,” Science in China, Series A, Vol. 40, No. 5, 2010, pp. 477-495.
[3] T.-J. Xiao and J. Liang, “Approximation of Laplace Trans- forms and Integrated Semigroups,” Journal of Functional Analysis, Vol. 172, No. 1, 2000, pp. 202-220. doi:10.1006/jfan.1999.3545
[4] X. Q. Song, “Spectral Map-ping Theorems for C-Semi-groups,” Journal of Mathematical Research & Exposition, Vol. 40, No. 5, 1996, pp. 526-530.
[5] Q. Zheng, “Pertubations and Approximations of Integrate Semigroups,” Acta Mathematica Sinica, New Series, Vol. 9, No. 3, 1993, pp. 252-260. doi:10.1007/BF02582903
[6] Q. Zheng, “Integral Semigroup and Abstract Cauchy Problem,” Advances in Mathematics, Vol. 21, No. 3, 1992, pp. 257-273.
[7] K. L. Lang and G. J. Yang, “Local c-Semigroup and Abstract Cauchy Problem,” Applied Mathematics, Vol. 11, No. 4, 1998, pp. 35-37.
[8] I. Miyadera and N. Tanaka, “A Remark on Exponentially Bounded C-Semigroups,” Proceedings of the Japan Aca- demy Series A, Vol. 66, No. 2, 1990, pp. 31-34.
[9] W. Arendt, “Vec-tor-Valued Laplace Transforms and Cauchy Problems,” Israel Journal of Mathematics, Vol. 59, No. 3, 1987, pp. 327-352. doi:10.1007/BF02774144
[10] W. Arendt, “Resolvent Positive Operators,” Proceedings London Mathematical Society, Vol. 54, No. 2, 1978, pp. 321-349. doi:10.1112/plms/s3-54.2.321
[11] R. Delaubenfels, “Existence and Uniqueness Families for the Abstract Cauchy Problem,” London Mathematical Society, Vol. 44, No. 2, 1991, pp. 310-322.
[12] S. W. Wang, “Mild Integrated C-Existence Families,” Studia Mathematics, Vol. 112, No. 3, 1995, pp. 251-266.
[13] M. C. Gao, “Mild Integrated C-Existence Families and Abstract Cauchy Problem,” Northeast Mathematics, Vol. 14, No. 1, 1998, pp. 95-102.
[14] N. Tanaka and I. Miyadera, “Exponentially Bounded C Semigroups and Integrated Semigroups,” Tokyo Journal of Mathematics, Vol. 12, No. 3, 1989, pp. 99-115. doi:10.3836/tjm/1270133551
[15] W. Arendt, “Vector Valued Laplace Tranforms and Cauchy Problems,” Israel Journal of Mathematics, Vol. 59, No. 3, 1987, pp. 327-352. doi:10.1007/BF02774144
[16] M. Mijatovic and S. pilipovic, “α-Times Integrated Semi- group,” Journal of Mathematical Analysis and Applications, Vol. 210, No. 2, 1997, pp. 790-803. doi:10.1006/jmaa.1997.5436
[17] Existence Families, “Functional calculi and Evolution Equations,” Lecture Notes in Mathematics, Springer-Verlag, New York, 1994.
[18] M. Hieber, “Laplace Transforms and α-Times Integrated Semigroup,” Forum Mathematicum, Vol. 3, No. 3, 1991, pp. 595-612. doi:10.1515/form.1991.3.595

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.