A B3LYP study on electronic structures of [(X)mMn(μ-oxo)2Mn(Y)n]q+ (X, Y = H2O, OH and O) as a Mn cluster model of OEC

Abstract

Electronic and molecular structures of [(X)mMn(μ-oxo)2Mn(Y)n]q+ (X, Y = H2O, OH and O), which are Mn cluster models at catalytic sites of OEC, were studied by broken-symmetry unrestricted B3LYP method. Two paths from the S0 to S3 states of Kok cycle were investigated. One is a path starting from [Mn(II) (μ-oxo)2Mn(III)] at the S0 state, and another is from [Mn(III) (μ-oxo)2Mn(III)] at the S0. Results found in this study are summarized as, 1) In [Mn(II), Mn(III)], it is not possible that H2O molecules coordinate to the Mn atoms with retaining the octahedral configuration. 2) The OHˉ anion selectively coordinates to Mn(IV) rather than Mn(III). 3) When the oxo atom directly bind to the Mn atom, the Mn atom must be a Mn(IV). From these results, the catalytic mechanism for four-electron oxidation of two H2O molecules in OEC is proposed. 1) The Mn4(II, III, IV, IV) at S0 is ruled out. 2) For Mn4(III, III, IV, IV) at S1, the Mn atom coordinated by OHˉ anion is a Mn(IV) not Mn(III). 3) Only Mn(III) ion which is coordinated by a H2O molecule at S0 plays crucial roles for the oxidation.

Share and Cite:

Katsuda, M. , Mitani, M. and Yoshioka, Y. (2012) A B3LYP study on electronic structures of [(X)mMn(μ-oxo)2Mn(Y)n]q+ (X, Y = H2O, OH and O) as a Mn cluster model of OEC. Journal of Biophysical Chemistry, 3, 111-126. doi: 10.4236/jbpc.2012.32013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kok, B., Forbush, B. and McGloin, M. (1970) Cooperation changes in photosynthetic O2 evolution-I. A linear four step mechanism. Photochemistry and Photobiology, 11, 457-475. doi:10.1111/j.1751-1097.1970.tb06017.x
[2] Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J. and Iwata, S. (2004) Architecture of the photosynthetic oxygen-evolving center. Science, 303, 1831-1838. doi:10.1126/science.1093087
[3] Loll, B., Kern, J., Saenger, W., Zouni, A. and Biesiadka, J. (2005) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature, 438, 1040-1044. doi:10.1038/nature04224
[4] Yano, J., Kern, J., Sauer, K., Latimer, M.J., Pushkar, Y., Biesiadka, J., Loll, B., Saenger, W., Messinger, J., Zouni, A. and Yachandra, V.K. (2006) Where water is oxidized to dioxygen: Structure of the photosynthetic Mn4Ca cluster. Science, 314, 821-825. doi:10.1126/science.1128186
[5] Umena, Y., Kawakami, K., Shen, J.-R. and Kamiya, N. (2010) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature, 473, 55-60. doi:10.1038/nature09913
[6] Robblee, J.H., Messinger, J., Cino, R.M., McFarlane, K.L., Fernandez, C., Pizzaro, S.A., Sauer, K. and Yachandra, V.K. (2002) The Mn cluster in the S0 state of the oxygenevolveing complex of photosystem II studied by EXAFS spectroscopy: Are there three di-μ-oxo-bridged Mn2 moieties in the tetranuclear Mn complex? Journal of the American Chemical Society, 124, 7459-7471. doi:10.1021/ja011621a
[7] Biesiadka, J., Loll, B., Kern, J., Irrgang, K.-D. and Zouni, A. (2004) Crystal structure of cyanobacterial photosystem II at 3.2 A resolution: A close look at the Mn-cluster. Physical Chemistry Chemical Physics, 6, 4733-4736. doi:10.1039/b406989g
[8] Yano, J., Pushkar, Y., Glatzel, P., Lewis A., Sauer, K., Messinger, J., Bergmann, U. and Yachandra, V.K. (2005) Highresolution Mn EXAFS of the oxygen-evolving complex in photosystem II: Structural implications for the Mn4Ca cluster. Journal of the American Chemical Society, 127, 14974-14975. doi:10.1021/ja054873a
[9] Debus R.J., Strickler M.A., Walker, L.M. and Hillier, W. (2005) No evidence from FTIR difference spectroscopy that asparatate-170 of the D1 polypeptide ligates a Manganese ion that undergoes oxidation during the S0 to S1, S1 to S2, or S2 to S3 transition in photosystem II. Biochemistry, 44, 1367-1374. doi:10.1021/bi047558u
[10] Ono, T.-A., Noguchi, T., Inoue, Y., Kusunoki, M., Matsushita, T. and Oyanagi H. (1992) X-ray detection of the period-four cycling of the manganese cluster in photosynthetic water oxidizing enzyme. Science, 258, 1335-1337. doi:10.1126/science.258.5086.1335
[11] Roelofs, T.A., Liang, W.C., Latimer, M.J., Cinco, R.M., Rompel, A., Andrews, J.C., Sauer, K., Yachandra, V.K. and Klein, M.P. (1996) Oxidation states of the manganese cluster during the flash-induced S-state cycle of the photosynthetic oxygen-evolving complex. Proceedings of the National Academy of Sciences of the United States of America, 93, 3335-3340. doi:10.1073/pnas.93.8.3335
[12] Ahrling, K.A., Peterson, S. and Styring, S. (1997) An oscillating manganese electron paramagnetic resonance signal from the S0 state of the oxygen evolving complex in photosystem II. Biochemistry, 36, 13148-13152. doi:10.1021/bi971815w
[13] Messinger, J., Robblee, J.H., Yu, W.O., Sauer, K., Yachandra, V.K. and Klein, M.P. (1997) The S0 state of the oxygen-evolving complex in photosystem II is paramagnetic: Detection of an EPR multiline signal. Journal of the American Chemical Society, 119, 11349-11350. doi:10.1021/ja972696a
[14] Iuzzolino, L., Dittmer, J., D?rner, W., Meyer-Klaucke, W. and Dau, H. (1998) X-ray absorption spectroscopy on layered photosystem II membrane particles suggests manganese-centered oxidation of the oxygen-evolving complex for the S0-S1, S1-S2, and S2-S3 transitions of the water oxidation cycle. Biochemistry, 37, 17112-17119. doi:10.1021/bi9817360
[15] Messinger, J., Robblee, J.H., Bergmann, U., Iuzzolino, L., Dorner, W., Meyer-Klaucke, W., Sole, V.A., Fernandez, C., Glatzel, H., Visser, R.M., Cinco, R.M., McFarlane, K.L., Bellacchio, E., Pizarro, S.A., Cramer, S.P., Sauer, K., Klein, M.P. and Yachandra, V.K. (2001) Absence of Mn-centered oxidation in the S2 → S3 transition: implications for the mechanism of photosynthetic water oxidation. Journal of the American Chemical Society, 123, 7804-7820. doi:10.1021/ja004307+
[16] Kulik, L.V., Epel, B., Lubitz, W. and Messinger, J. (2005) 55Mn pulse ENDOR at 34 GHz of the S0 and S2 states of the oxygen-evolving complex in photosystem II. Journal of the American Chemical Society, 127, 2392-2393. doi:10.1021/ja043012j
[17] Hallahan, B.J., Nugent, J.H., Warden, J. T. and Evans, M.C. (1992) Investigation of the origin of the “S3” EPR signal from the oxygen-evolving complex of photosystem 2: The role of tyrosine Z. Biochemistry, 31, 4562-4573. doi:10.1021/bi00134a005
[18] Yachandra, V.K., Sauer, K. and Klein, M.P. (1996) Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen. Chemical Reviews, 96, 2927-2950. doi:10.1021/cr950052k
[19] Dau, H., Iuzzolino, L. and Dittmer, J. (2001) The tetra-manganese complex of photosystem II during its redox cycle—X-ray absorption results and mechanistic implications. Biochimica et Biophysica Acta, 1503, 24-39. doi:10.1016/S0005-2728(00)00230-9
[20] Robblee, J. H., Cinco, R. M. and Yachandra, V. K. (2001) X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochimica et Biophysica Acta, 2001, 1503, 7-23. doi:10.1016/S0005-2728(00)00217-6
[21] Dau, H., Liebisch, M. and Haumann, M. (2003) X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—Potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Analytical and Bioanalytical Chemistry, 376, 562-583. doi:10.1007/s00216-003-1982-2
[22] Dau, H. and Haumann, M. (2008) The manganese complex of photosystem II in its reaction cycle—Basic framework and possible realization at the atomic level. Coordination Chemistry Reviews, 252, 273-295. doi:10.1016/j.ccr.2007.09.001
[23] Goodson, P.A., Glerup, J., Hodgson, D.J., Michelsen, K. and Pedersen, E. (1990) Binuclear bis(μ-oxo)dimanganese (III,IV) and -(IV,IV) complexes with N,N’-bis(2-prydidylmethyl)-1, 2-ethanediamine. Inorganic Chemistry, 29, 503-508. doi:10.1021/ic00328a034
[24] Pal, S., Gohdes, J.W., Wilisch, W.C.A. and Armstrong, W. H. (1992) Synthesis, structure, and properties of a complex that consists of an [Mn2O2(O2CCH3)]2+ core and a spanning hexadentate ligand. Inorganic Chemistry, 31, 713-716. doi:10.1021/ic00030a036
[25] Larson, E., Haddy, A., Kirk, M.L., Sands, R.H., Hatfield, W.E. and Pecoraro, V.L. (1992) The asymmetric mixedvalent complex [Mn(2-OH-3,5-Cl2-SALPN]2ClO4 shows a temperature-dependent interconversion between g = 2 mutiline and low-field EPR signals. Journal of the American Chemical Society, 114, 6263-6265. doi:10.1021/ja00041a065
[26] Manchanda, R., Brudvig, G.W., de Gala, S. and Crabtree, R.H. (1994) Improved syntheses and structure of [MnIII MnIV(O)2(phen)4](Cl4)3?2CH3COOH?2H2O. Inorganic Chemistry, 33, 5157-5160. doi:10.1021/ic00100a049
[27] Baldwin, M.J., Stemmler, T.L., Riggs-Gelasco, P.J., Kirk, M.L., Penner-Hahn, J.E. and Pecoraro, V.L. (1994) Structural and magnetic effects of successive protonations of oxo bridges in high-valent manganese dimmers. Journal of the American Chemical Society, 116, 11349-11356. doi:10.1021/ja00104a014
[28] Jensen, A.F., Su, Z., Hansen, N.K. and Larsen, F. K. (1995) X-ray diffraction study of the correlation between electrostatic potential and K-absorption edge energy in a bis(μ-oxo)Mn(III)-Mn(IV) dimer. Inorganic Chemistry, 34, 4244-4252. doi:10.1021/ic00120a033
[29] Pal, S., Olmstead, M. M. and Armstrong, W. H. (1995) Syntheses, structures, and properties of [Mn2(μ-O)2(μ-O2CCH3)(fac-bpea)2](ClO4)2 and two halideligated dioxobridged dimmers derived therefrom: [Mn2(μ-O)2X2(merbpea)2](ClO4)2 (X = F, Cl). Inorganic Chemistry, 34, 4708-4715. doi:10.1021/ic00123a002
[30] Frapart, Y.-F., Boussac, A., Albach, R., Anxolabéhère-Mallart, E., Delroisse, M., Verlhac, J., Blondin, G., Girerd, J., Guilhem, J., Cesario, M., Rutherford, A.W. and Lexa, D. (1996) Chemical modeling of the oxygen-evolving center in plants. Synthesis, Structure and electronic and redox properties of a new mixed valence Mn-oxo cluster: [Mn2III,IVO2(bisimMe2en)2]3+ (bisimMe2en = N,N’-dimethylN,N’-bis(imidazol-4-ylmetyl)ethane-1,2-diamine). EPR detection of an imidazole radical induced by UV irradiation at
[31] Horner, O., Charlot, M., Boussac, A., Anxolabéhère-Mallart, E., Tchertanov, L., Guilhem, J. and Girerd, J. (1998) Synthesis, Structure, electronic, redox, and magnetic properties of a new mixed-valent Mn-oxo cluster: [Mn2III,IVO2 (N,Nbispicen)2]3+ (N,Nbispicen = N,N-bis(2pyridylmethyl)-1,2-diamino-ethane). European Journal of Inorganic Chemistry, 721-727. doi:10.1002/(SICI)1099-0682(199806)1998:6<721::AID-EJIC721>3.0.CO;2-H
[32] Sch?fer, K., Bittl, R., Zweygart, W., Lendzian, F., Haselhorst, G., Weyhermüller, T., Wieghardt, K. and Lubitz, W. (1998) Electronic structure of antiferromagnetically coupled dinuclear manganese (MnIIIMnIV) complexes studied by magnetic resonance techniques. Journal of the American Chemical Society, 120, 13104-13120. doi:10.1021/ja9827548
[33] Horner, O., Anxolabéhère-Mallart, E., Charlot, M., Tchertanov, L., Guilhem, J., Mattioli, T.A., Boussac, A. and Girerd, J. (1999) A new manganese dinuclear complex with phenolate ligands and a single unsupported oxo bridge. Storage of two positive charges within less than 500 mV. Relevance to photosynthesis. Inorganic Chemistry, 38, 12221232. doi:10.1021/ic980832m
[34] Kirby, J.A., Robertson, A.S., Smith, J.P., Thompson, A.C., Cooper, S.R. and Klein, M.P. (1981) State of manganese in the photosynthetic apparatus. 1. Extended X-ray absorption fine structure studies on Chloroplasts and di-μ-oxo-bridged dimanganese model compounds. Journal of the American Chemical Society, 103, 5529-5537. doi:10.1021/ja00408a042
[35] Penner-Hahn, J.E., Fronko, R.M., Pecoraro, V.L., Yocum, C.F., Betts, S.D. and Bowlby, N.R. (1990) Structural characterization of the manganese sites in the photosynthetic oxygen-evolving complex using X-ray absorption spectroscopy. Journal of the American Chemical Society, 1990, 112, 2549-2557. doi:10.1021/ja00163a011
[36] Dismukes, G.C. and Siderer, Y. (1981) Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proceedings of the National Academy of Sciences of the United States of America, 78, 274-278. doi:10.1073/pnas.78.1.274
[37] Zhao, X.G., Richardson, W.H., Chen, J.-L., Li, J., Noodleman, L., Tsai, H.-L. and Hendrickson, D.N. (1997) Density functional calculations of electronic structure, charge distribution, and spin coupling in manganese-oxo dimer complexes. Inorganic Chemistry, 36, 1198-1217. doi:10.1021/ic9514307
[38] Soda, T., Kitagawa, Y., Onishi, T., Takano, Y., Shigeta, Y., Nagao, H., Yoshioka, Y. and Yamaguchi, K. (2000) Ab initio computations of effective exchange integrals for H-H, H-He-H and Mn2O2 complex: Comparison of brokensymmetry approaches. Chemical Physics Letters, 319, 223-230. doi:10.1016/S0009-2614(00)00166-4
[39] Delfs, C.D. and Stranger, R. (2001) Oxidation state dependence of the geometry, electronic structure, and magnetic coupling mixed oxoand carboxylato-bridged manganese dimmers. Inorganic Chemistry, 40, 3061-3076. doi:10.1021/ic0008767
[40] Sproviero, E.M., Gascon, J.A., McEvoy, J.P., Brudvig, G.W. and Batista, V.S. (2006) Characterization of synthetic oxomanganese complexes and the inorganic core of the O2evolving complex in photosystem II: Evaluation of the DFT/B3LYP level of theory. Journal of Inorganic Biochemistry, 100, 786-800. doi:10.1016/j.jinorgbio.2006.01.017
[41] Hasegawa, K. and Ono, T. (2006) Vibrational analyses of di-μ-oxo-bridged manganese dimers based on density functional theory calculations. Theoretical evaluation of Mn-O vibrations of the Mn-O cluster core for photosynthetic oxygen-evolving complex. Bulletin of the Chemical Society of Japan, 79, 1025-1031. doi:10.1246/bcsj.79.1025
[42] Ruiz-García, R., Pardo, E., Mu?oz, M.C. and Cano, J. (2007) High valent bis(oxo)-bridged dinuclear manganese oxamates: synthesis, crystal structures, magnetic properties, and electronic structure calculations of bis(μ-oxo)dimanganese(IV) complexes with binucleating o-phenylenedioxamate ligand. Inorganica Chimica Acta, 360, 221-232.
[43] Orio, M., Pantazis, D.A., Petrenko, T. and Neese, F. (2009) Magnetic and spectroscopic properties of mixed valence manganese (III,IV) dimers: A sysnthetic study using broken symmetry density functional theory. Inorganic Chemistry, 48, 7251-7260. doi:10.1021/ic9005899
[44] McGrady, J.E. and Stranger, R. (1997) Redox-induced changes in the geometry and electronic structure of di-μoxo-bridged manganese dimers. Journal of the American Chemical Society, 119, 8512-8522. doi:10.1021/ja964360r
[45] McGrady, J.E. and Stranger, R. (1999) Redox-induced formation and cleavage of O-O and bonds in a peroxobridged manganese dimer: A density functional study. Inorganic Chemistry, 38, 550-558. doi:10.1021/ic981253k
[46] Delfs, C.D. and Stranger, R. (2003) Investigating the stability of the peroxide bridge in (μ-oxo)and bis(μ-oxo)manganese clusters. Inorganic Chemistry, 2003, 42, 2495-2503. doi:10.1021/ic0205740
[47] Petrie, S. and Stranger, R. (2004) On the mechanism of dioxygen formation from a di-μ-oxo-bridged manganese dinuclear complex. Inorganic Chemistry, 43, 5237-5244. doi:10.1021/ic049967k
[48] Mitani, M., Wakamatsu, Y., Katsurada, T. and Yoshioka, Y. (2006) Density functional study on geometrical features and electronic structures of di-μ-oxo bridged [Mn2O2(H2O)8]q+ with Mn(II), Mn(III), and Mn(IV). The Journal of Physical Chemistry A, 110, 13895-13914. doi:10.1021/jp0571877
[49] Katsuda, M., Hishikawa, E., Mitani, M. and Yoshioka, Y. (2010) Theoretical study of electronic structures of [(H2O)3(O-)Mn(m-oxo)2Mn(OH2)4]q+ (q = 2 or 3) with Mn-O bond. Physical Chemistry Chemical Physics, 12, 2730-2739. doi:10.1039/b914793d
[50] Proserpio, D.M., Hoffmann, R. and Dismukes, G.C. (1992) Molecular mechanism of photosynthetic oxygen evolution: A theoretical approach. Journal of the American Chemical Society, 1992, 114, 4374-4382. doi:10.1021/ja00037a052
[51] Becke, A.D. (1993) Density—Functional thermochemistry III. The role of exact exchange. Journal of Chemical Physics, 98, 5648-5652. doi:10.1063/1.464913
[52] Lee, C., Yang, W. and Parr, R.G. (1988) Development of Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789. doi:10.1103/PhysRevB.37.785
[53] Sch?fer, A., Horn, H. and Ahlrichs, R. (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys., 97, 2571-2577. doi:10.1063/1.463096
[54] Hariharan, P.C. and Pople, J.A. (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theorefica Chimica Acta, 28, 213-222. doi:10.1007/BF00533485
[55] Sch?fer, A., Huber, C. and Ahlrichs, R. (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. Journal of Chemical Physics, 1994, 100, 5829-5835. doi:10.1063/1.467146
[56] Gaussian 03, Revision B.05, Frisch, M.J., et al., Gaussian Inc., Pittsburgh, 2003.
[57] Amos, A.T. and Hall, G.G. (1961) Single determinant wave functions. Proceedings of the Royal Society of London, 263, 483-493. doi:10.1098/rspa.1961.0175
[58] Liu, S. (2007) On the relationship between densities of Shannon entropy and Fisher information for atoms and molecules. Journal of Chemical Physics, 126, 1-3. doi:10.1063/1.2741244
[59] Mohajeri, A. and Alipour, M. (2009) Shannon information entropy of fractional occupation probability as an electron correlation measure in atoms and molecules. Physical Chemistry, 360, 132-136. doi:10.1016/j.chemphys.2009.04.016
[60] Boussac, A., Sugiura, M., Rutherford, A.W. and Dorlet, P. (2009) Complete EPR spectrum of the S3-state of the oxygen-evolving photsystem II. Journal of the American Chemical Society, 131, 5050-5051. doi:10.1021/ja900680t
[61] Milikisiyants, S., Chatterjee, R., Weyers, A., Meenaghan, A., Coates, C. and Lakshmi, K.V. (2010) Ligand environment of the S2 state of photosystem II: A study of the hyperfine interactions of the tetranuclear manganese cluster by 2D 14N HYSCORE spectroscopy. Journal of Physical Chemistry B, 114, 10905-10911. doi:10.1021/jp1061623
[62] Ichino, T., Yamaguchi, Y. and Yoshioka, Y. (2012) Chemistry Letters, 41, 18-20. doi:10.1246/cl.2012.18

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.