Share This Article:

Dominant Factors of the Nature Regulating CO2 Release from Boreal Forest Land

Full-Text HTML Download Download as PDF (Size:935KB) PP. 333-338
DOI: 10.4236/ijg.2012.32036    3,792 Downloads   5,808 Views  


Temperature is often considered as a primary factor for microbial decomposition of soil organic carbon. Boreal forests are the large terrestrial carbon pool: if carbon stored in this region is transferred to the atmosphere as CO2 by a warming-induced acceleration of its decomposition, there will be positive feedback to global warming. It is reported that real issue regarding the release of carbon from soils to the atmosphere is how natural factors interact to influence decomposition of soil organic matter, so we observed mass losses (indicating decomposition rates) from litter and litterfall in a Northern Fennoscandia forest over 3 years under natural conditions. Our field survey has demonstrated that mass losses from most kinds of sample had moderate correlation with the temperature. Of the various samples, the canopy-gap litter alone had a greater rate (~70%) of mass loss. It is at least necessary to make a clear distinction of monitoring sites (under the canopy and in the canopy gap) when discussing the effect of climate on soil CO2 release from high-latitude forests. Though temperature, soil moisture and soil properties are prioritized in the issue of soil CO2 release, our results suggest that the fungi/bacteria rate and the wind-related mix/fragmentation are also important factors to be considered; however, this speculation is just tentative, and more detail research is called for.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Kikuchi and T. T. Gorbacheva, "Dominant Factors of the Nature Regulating CO2 Release from Boreal Forest Land," International Journal of Geosciences, Vol. 3 No. 2, 2012, pp. 333-338. doi: 10.4236/ijg.2012.32036.


[1] M. Couteaux, P. Bottner and B. Berg, “Litter Decomposition, Climate and Litter Quality,” Tree, Vol. 10, 1995, pp. 63-66. doi:10.1016/S0169-5347(00)88978-8
[2] I. C. Burke, J. P. Kaye, S. P. Bird, S. A. Hall, R. L. McCulley and G. L. Sommerville, “Evaluating and Testing Models of Terrestrial Biogeochemistry—The Role of Temperature in Controlling Decomposition,” In: C. Canham, J. Cole and W. Lauenroth, Eds., Models in Ecosystem Science, Princeton University Press, Princeton, 2003, pp. 225-253.
[3] R. K. Dixon, S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler and J. Wisnieski, “Carbon Pools and Flux of Global Forest Systems,” Science, Vol. 263, No. 514, 1994, pp. 185-190. doi:10.1126/science.263.5144.185
[4] W. L. Chapman and J. E. Walsh, “Recent Variations of Sea Ice and Air Temperature in High Latitudes,” Bulletin of the American Meteorological Society, Vol. 74, No. 1, 1993, pp. 33-47. doi:10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2
[5] Intergovernmental Panel on Climate Change, “IPCC Special Report on Land Use, Land-Use Change and Forest,” Cambridge University Press, Cambridge, 2000.
[6] T. Ito and T. Oikawa, “A Simulation Model of the Carbon Cycle in Land Ecosystems,” Ecological Modeling, Vol. 151, No. 2, 2002, pp.143-176. doi:10.1016/S0304-3800(01)00473-2
[7] C. P. Giardina and M. G. Ryan, “Evidence That Decomposition Rates of Organic Carbon in Mineral Soil Do Not Vary with Temperature,” Nature, Vol. 404, No. 6780, 2000, pp. 858-861. doi:10.1038/35009076
[8] J. Liski, H. Ilvesniemi, A. Makela and C. J. Westman, “CO2 Emissions from Soil in Response to Climatic Warming Are Overestimated—The Decomposition of Old Soil Organic Matter Is Tolerant of Temperature,” Ambio, Vol. 28, 1999, pp. 171-174.
[9] C. Fang, P. Smith, J. B. Moncrieff and J. U. Smith, “Similar Response of Labile and Resistant Soil Organic Matter Pools to Change in Temperature,” Nature, Vol. 433, No. 7021, 2005, pp. 57-59. doi:10.1038/nature03138
[10] A. D. McGuire, J. M. Melillo and L. A. Joyce, “Interactions between Carbon and Nitrogen Dynamics in Estimating Net Primary Productivity for Potential Vegetation in North America,” Global Biogeochemical Cycles, Vol. 6, No. 2, 1992, pp. 101-124. doi:10.1029/92GB00219
[11] W. Borken, E. A. Davidson and K. Savage, “Drying and Wetting Effects on Carbon Dioxide Release from Organic Horizons,” Soil Science Society of American Journal, Vol. 67, 2003, pp. 1888-1896. doi:10.2136/sssaj2003.1888
[12] E. A. Davidson, S. E. Trumbore and R. Amundson, “Soil Warming and Organic Carbon Content,” Nature, Vol. 408, No. 6814, 2000, pp. 789-790. doi:10.1038/35048672
[13] J. Lloyd and J. A. Taylor, “On Temperature Dependence of Soil Respiration,” Functional Ecology, Vol. 8, No. 3, 1994, pp. 315-323. doi:10.2307/2389824
[14] P. G. Jarvis and S. Linder, “Constraints to Growth of Boreal Forests”, Nature, Vol. 405, No. 6789, 2000, pp. 904-905. doi:10.1038/35016154
[15] N. Lukina and V. Nikonov, “Nutrient Status of North Taiga Forest,” Kola Science Center, Apatity, 1998.
[16] C. E. Prescott and D. G. Maynard, “Humus in Northern Forest—Friend or Foe?” Forest Ecology and Management, Vol. 133, No. 1-2, 2000, pp. 23-26. doi:10.1016/S0378-1127(99)00295-9
[17] S. Conde, D. Richard and N. Liamine, “The Boreal Biogeographical Region,” European Environment Agency, Copenhagen, 2002.
[18] D. Nicholas and D. Crawford, “Concepts in the Development of New Accelerated Test Methods for Wood Decay,” In: B. Goodell, D. Nicholas and T. P. Schultz, Eds., Wood Deterioration and Preservation, ACS Symposium Series #845, American Chemical Society, Washington DC, 2003, pp. 288-312.
[19] S. Noshiro and P. Baas, “Latitudinal Trends in Wood Anatomy within Species and Genera,” American Journal of Botany, Vol. 87, No. 10, 2000, pp. 1495-1506. doi:10.2307/2656876
[20] M. G?dde, M. D. David and M. J. Christ, “Carbon Mobilization from the Forest Floor under Red Spruce in the Northeastern USA”, Soil Biology and Biochemistry, Vol. 28, No. 9, 1996, pp. 1181-1189. doi:10.1016/0038-0717(96)00130-7
[21] T. K?tterer, M. Reichstein and O. Andrén, “Temperature Dependence of Organic Matter Decomposition: A Critical Review Using Literature Data Analyzed with Different Models,” Soils Biology and Fertility of Soils, Vol. 27, 1998, pp. 258-262. doi:10.1007/s003740050430
[22] N. S. Panikov, P. W. Flanagan, W. C. Oechel, M. A. Mastepanov and T. R. Christensen, “Microbial Activity in Soil Frozen to –39?℃”, Soil Biology and Biochemistry, Vol. 38, No. 4, 2006, pp. 785-794. doi:10.1016/j.soilbio.2005.07.004
[23] N. J. Nadelhoffer, A. E. Giblin, G. R. Shaver and A. E. Linkins, “Microbial Process and Plant Nutrient Availability in Arctic Soil,” In: F. S. Chapin, R. L. Fefferies, J. F. Reynoldds and G. R. Shaver, Eds., Arctic Ecosystem in a Changing Climate—An Ecophysiological Perspective, Academic Press, San Diego, 1991, pp. 281-319.
[24] B. Berg, “Litter Decomposition and Organic Matter Turnover in Northern Forest Soil,” Forest Ecology and Management, Vol. 133, No. 1-3, 2000, pp. 13-22. doi:10.1016/S0378-1127(99)00294-7
[25] J. Lloyd and J. A. Taylor, “On Temperature Dependence of Soil Respiration,” Functional Ecology, Vol. 8, 1994, pp. 315-323. doi:10.2307/2389824
[26] A. D. McGuire, J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace, B. Moore and C. J. Vorosmarty, “Interactions between Carbon and Nitrogen Dynamics in Estimating Net Primary Productivity for Potential Vegetation in North America”, Global Biogeochemcal Cycles, Vol. 6, No. 2, 1992, pp. 101-124. doi:10.1029/92GB00219
[27] P. Sollins, “Input and Decay of Coarse Woody Debris on Coniferous Stands in Western Oregon and Washington,” Canadian Journal of Forest Research, Vol. 12, No. 1, 1982, pp. 18-28. doi:10.1139/x82-003
[28] V. V. Nikonov, N. V. Lukina and L. M. Polyanskaya, “Distribution of Microorganisms in the Al-Fe-Humus Podzols of Natural and Anthropogenically-Impacted Boreal Spruce Forests,” Microbiology, Vol. 70, No. 3, 2001, p. 319. doi:10.1023/A:1010459512590
[29] T. Osono and H. Takeda, “Fungal Decomposition of Abies Needle and Betula Leaf Litter,” Mycologia, Vol. 98, No. 2, 2006, pp. 172-179. doi:10.3852/mycologia.98.2.172
[30] E. V. Blagodatskaya and T. H. Anderson, “Interactive Effects of pH and Substrate Quality on the Fungal-to-Bacterial Ratio and qCO2 of Microbial Communities in Forest Soils,” Soil Biology and Biochemistry, Vol. 30, No. 10-11, 1998, pp. 1269-1274. doi:10.1016/S0038-0717(98)00050-9
[31] K. E. Clemmensen, A. Michelsen, S. Jonasson and G. R. Shaver, “Increased Ectomycorrhizal Fungal Abundance After Long-Term Fertilization and Warming of Two Arctic Tundra Ecosystems,” New Phytologist, Vol. 171, No. 2, 2006, pp. 391-404. doi:10.1111/j.1469-8137.2006.01778.x
[32] M. N. Thormann, S. E. Bayley and R. S. Currah, “Microcosm Tests of the Effects of Temperature and Microbial Species Number on the Decomposition of Sedge and Bryophyte Litter from Southern Boreal Peatlands,” Canadian Journal of Microbiology, Vol. 50, 2004, pp. 793-802. doi:10.1139/w04-064
[33] R. D. G. Hanlon, “Some Factors Influencing Microbial Growth on Soil Animal Faeces II—Bacterial and Fungal Growth on Soil Animal Faeces,” Pedobiologia, Vol. 21, 1981, pp. 264-270
[34] M. J. Schroeder and C. C. Buck, “Fire Weather – A Guide for Application of Meteorological Information to Forest Fire Control Operations,” US Department of Agriculture Forest Service, Washington DC, 1979.
[35] T. Gunnarsson, P. Sundin and A. Tunlid, “Importance of Leaf Litter Fragmentation for Bacterial Growth,” Oikos, Vol. 52, 1988, pp. 303-308. doi:10.2307/3565203
[36] T. Gorbacheva and R. Kikuchi, “Plant-to-Soil Pathways in the Subarctic—Qualitative and Quantitative Changes of Different Vegetative Fluxes,” Environmental Biotechnology, Vol. 2, No. 1, 2006, pp. 26-30

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.