Biomaterial Based on Doped Calcium Carbonate-Phosphate for Active Osteogenesis

Abstract

Doped calcium carbonate-phosphate is a biocompatible material that influence actively on the osteogenesis, bone regenerate, strengthening of bone and dental tissues including through the skin. A mechanism of the synthesis reactions of doped nanocrystalline calcium carbonate-phosphate an oscillating type of model for these reactions is proposed. The results indicate that the synthesis involves the formation of hydroxy carbonate complexes from the three calcium carbonate polymorphs (calcite, vaterite, and aragonite) in a solution of ammonium chloride and ammonium carbonate, followed by reaction with orthophosphoric acid. The formation of nanocrystalline calcium carbonate-phosphate doped with Fe2+, Mg2+, Zn2+, K+, Si4+, and Mn2+, has been studied by X-ray diffraction, IR spectroscopy, differential thermal analysis, and energy dispersive X-ray fluorescence analysis. This ensures the preparation of a bioactive material based on octacalcium hydrogen phosphate, and calcium chloride hydroxide phosphates containing cation vacancies. Particle-size analysis data show that the materials contain nanoparticles down to 10 nm in size. Heat treatment of the doped calcium carbonate phosphates produces calcium hydroxyapatite containing cation vacancies, which can be used as a bioactive ceramic.

Share and Cite:

L. F. Koroleva, L. P. Larionov and N. P. Gorbunova, "Biomaterial Based on Doped Calcium Carbonate-Phosphate for Active Osteogenesis," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2, 2012, pp. 226-237. doi: 10.4236/jbnb.2012.32028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. N. Hughes, “The Inorganic Chemistry of Biological Processes,” Mir Publishers, Moscow, 1983
[2] М. R. Sapin and G. L. Bilich, “Human Anatomy Vol. 1,” Moscow, 2000.
[3] V. Y. Bibikov, V. V. Smirnov, I. V. Fadeeva, G. V. Ray, D. Ferro, S. M. Barinov and L. I. Shvorneva, “Intensifica tion of Sintering Carbonate-Hydroxyapatite of Ceramics for Bone Implants,” Perspectivniye Materialy, No. 6, 2005, pp. 43-48.
[4] Y. D. Tretyakov, “Development of Inorganic Chemistry as a Fundamental Base for the Design of New Generations of Functional Materials, Russian Chemical Reviews, Vol. 73, No. 9, 2004, pp. 899-916.
[5] А. G. Veresov, V. I. Putlyaev and Y. D. Tretyakov, “Chemistry of Inorganic Bioma-terials on the Basis of Calcium Phosphates,” The Russian Chemical Journal of the Society, Vol. 48, No. 4, 2004, pp. 52-64.
[6] L. F. Koroleva, “Doped Calcium Phosphates—A Promising Biomaterial, Perspectivniye Materialy, No. 4, 2007, pp. 30-36.
[7] L. F. Koroleva, “Doped Nanocrystalline Calcium Carbonate Phosphates, Inorganic Materials, Vol. 46, No. 4, 2010, pp. 405-411. doi:10.1134/S0020168510040151
[8] L. F. Koroleva, “An Oscillating Mechanism in the Synthesis of Doped Nanocrystalline Calcium Carbonate Phos- phates,” Nanotechnologies in Russia, Vol. 5, No. 9-10, 2010, pp. 635-640. doi:10.1134/S1995078010090077
[9] E. Bouyer, F. Gitzhofer and M. I. Boulos, “Morphological Study of Hydroxyapatite Nanocrystal Suspension,” Journal of Materials Science: Materials in Medicine, Vol. 11, No. 8, 2000, pp. 523-531. doi:10.1023/A:1008918110156
[10] C. S. Liu, Y. Huang, W. Shen and J. H. Cui, “Kinetics of Hydroxyapatite Precipitation at pH 10 to 11,” Biomate- rials, Vol. 22, No. 4, 2001, pp. 301-306. doi:10.1016/S0142-9612(00)00166-6
[11] G. V. Rodicheva, V. P. Orlovsky, V. P. Privalov, S. M. Barinov, F. S. Pustikelli and S. Oskarson, “Synthesis and Physical Chemical Research of Calcium Carbonate-Hydroxyapatite of Type,” Journal Inorganic Chemistry, Vol. 46, No. 11, 2001, pp. 1798-1802.
[12] J. Cihlar and K. Castkova, “Direct Synthesis of Nanocrystalline Hydroxyapatite by Hydrothermal Hydrolysis of Alkylphosphates,” Monatshefte für Chemie/Chemical Monthly, Vol. 133, No. 6, 2002, pp. 761-771.
[13] C. Tasi and F. Aldinger, “Formation of Apatitic Calcium Phosphates in a Na-K-Phosphate Solution of pH 7.4,” Journal of Materials Science: Materials in Medicine, Vol. 16, No. 2, 2005, pp. 167-174. doi:10.1007/s10856-005-5919-5
[14] S. M. Barinov and V. S. Komlev, “Calcium Phosphate Based Bioceramics,” Nauka, Moscow, 2005.
[15] R.-X. Sunl and Y.-P. Lu, “Fabrication and Characteriza- tion of Porous Hydroxyapatite Microspheres by Spray- drying Method,” Frontiers of Materials Science in China, Vol. 2, No. 1, 2008, pp. 95-98. doi:10.1007/s11706-008-0017-5
[16] L. Hong, M. Y. Zhu, L. H. Li and C. R. Zhou, “Process- ing of Nanocrystalline Hy-droxyapatite Particles via Reverse Microemulsions,” Journal of Materials Science, Vol. 43, No. 1, 2008, pp. 384-389. doi:10.1007/s10853-007-2182-9
[17] S. Peroos, Z. M. Du and N. H. de Leeuw, “A Computer Modeling Study of Uptake, Structure and Distribution of Carbonate Defects in Hydrox-yl-Apatite,” Biomaterials, Vol. 27, No. 9, 2006, pp. 2156-2161. doi:10.1016/j.biomaterials.2005.09.025
[18] N. V. Kitikova, I. L. Shashkova, Y. G. Zonov, O. A. Sycheva and A. I. Rat’ko, “Effect of Phase Transformations during Synthesis on the Chemical Composition and Structure of Calcium-Deficient Hydroxyapatite,” Inorganic Materials, Vol. 43, No. 10, 2007, pp. 319-324. doi:10.1134/S0020168507100160
[19] A. S. Fomin, S. M. Barinov, V. M. Ievlev, V. V. Smirnov, B. P. Mikhailov, E. K. Belonogov and N. A. Drozdova, “Nanocrystalline Hydroxyapatite Ceramics Produced by Low-Temperature Sintering after High-Pressure Treatment,” Doklady Chemistry, Vol. 418, No. 1, 2008, pp. 22-25. doi:10.1134/S0012500808010084
[20] R.-X. Suni and Y.-P. Lu, “Fabrication and Characterization of Porous Hydroxyapatite Microspheres by Spraydrying Method,” Frontiers of Materials Science in China, Vol. 2, No. 1, 2008, pp. 95-98. doi:10.1007/s11706-008-0017-5
[21] Y. Ling, J, Han, S. Chye, J. Loo, N. T. Phung, F. Boey and J. Ma, “Controlled Size and Morphology of EDTMP-Doped Hydroxyapatite Nanoparticles as Model for 153Samarium-EDTMP doping. Journal of Materials Science: Materials in Medicine, Vol. 19, No. 9, 2008, pp. 2993-3003. doi:10.1007/s10856-008-3426-1
[22] I. S. Neira, Y. V. Kolen’ko, O. I. Lebedev, G. Van Tendeloo, H. S. Gupta, N. Matsushita, M. Yoshimura and F. Guitian, “Rational Synthesis of a Nanocrystalline Cal- cium Phosphate Cement Exhibiting Rapid Conversion to Hydroxyapatite,” Materials Science and Engineering: C, Vol. 29, No. 7, 2009, pp. 2124-2132. doi:10.1016/j.msec.2009.04.011
[23] J. V. R. Generosi, V. R. Albertini, B. Paci, “Crystalliza- tion Process of Carbonate Substituted Hydroxyapatite Nanoparticles in Toothpastes upon Hysiological Conditions: An in Situ Time-Resolved X-Ray Diffraction Study,” Journal of Materials Science: Materials in Medicine, Vol. 21, No. 2, 2010, pp. 445-450. doi:10.1007/s10856-009-3905-z
[24] M. Hazegawa, Y. Doi and A. Uchida, “Cell-Mediated Bioresorption of Sintered Carbonate Apatite in Rabbits,” Journal of Bone and Joint Surgery, Vol. 85, No. 1, 2003, pp.142-147.
[25] M. Mullender, A. J. El Haj, Y. Yang, M. A. van Duin, E. H. Burger and I. J. Klein-Nulend, “Mechanotransduction of Bone Cells in Vitro: Mechanobiology of Bone Tissue, Medical & Biological Engineering & Computing, Vol. 42, No. 1, 2004, pp. 14-21.
[26] C. Lai, Y. J. Wang and K. Wei, “Nucleation Kinetics of Calcium Phosphate Nanoparticles in Reverse Micelle So- lution,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 299, No. 1-3, 2007, pp. 203- 208. doi:10.1016/j.colsurfa.2007.08.009
[27] J. Brandt, S. Henning, G. Michler, W. Hein, A. Bernstein and M. Schulz, “Nanocrystalline Hydroxyapatite for Bone Repair: An Animal Study,” Journal of Materials Science: Materials in Medicine, Vol. 21, No. 1, 2010, pp. 283-294. doi:10.1007/s10856-009-3859-1
[28] D. G. Peters, J. M. Hayes and G. M. Hieftje, “Chemical Separations and Measurements: Theory and Practice of Analytical Chemistry,” Saunders, New York, 1974.
[29] J. German and H. Liebowitz, “Mechanics of Destruction of the Bone Tissue, In: H. Liebowitz, Ed., Fracture of Nonmetals and Composites, Mir Publishers, Moscow, 1976, pp. 391-463.
[30] L. F. Koroleva, L. P. Larionov and N. P. Gorbunova, “Doped Calcium Carbonate Phosphates—An Effective Ultradispersed Biomaterial for Substitution and Strengthening of Bony Tooth Tissues,” Proceedings of the International Forum on Nanotechnologies “Rusnanotech 08,” Moscow, 3-5 December 2008, pp. 505-507.
[31] I. R. Prigozhine and R. Lefebre, “Symmetry Breaking Instabilities Indissipative Systems,” Journal of Chemical Physics, Vol. 48, 1968, pp. 1665-1700. doi:10.1063/1.1668896
[32] R. J. Field and M. Burger, “Oscillations and Traveling Waves in Chemical Systems,” Wiley, New York, 1985.
[33] J. A. Higgins, “A Chemical Mechanism for Oscillations in Glicolitic Intermediates in Yeast Cells,” Proceedings of the National Academy of Sciences, Vol. 51, No. 6, 1954, pp. 989-994.
[34] J. A. Higgins, “The Theory of Os-cillating Reactions,” Inorganic Chemistry, Vol. 59, No. 5, 1967.
[35] G. Dupont and A. Goldbetter, “Theoretical Insights into the Origin of Signal-Induced Calcium Oscillations: From Experiments to Theoretical Models,” Academic Press, London, 1989.
[36] G. Dupont and A. Goldbetter, “Protein Phosphorylation Driven by Intracellular Calcium Oscillations: A Kinetic Analysis, Biophysical Chemistry, Vol. 42, No. 2, 1992, pp. 257-270. doi:10.1016/0301-4622(92)80018-Z
[37] G. Dupont and A. Goldbetter, “Oscillations and Waves of Citosolic Calsium: Insights from Theoretical Models,” BioEssays, Vol. 14, No. 7, 1992, pp. 485-493. doi:10.1002/bies.950140711

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.