Share This Article:

Reproducing Cochlear Signals by a Minimal Electroacoustic Model

Abstract Full-Text HTML XML Download Download as PDF (Size:1252KB) PP. 33-39
DOI: 10.4236/ojbiphy.2012.22005    4,317 Downloads   9,252 Views   Citations

ABSTRACT

Transient-Evoked Otoacoustic Emissions (TEOAEs) were studied, with particular reference to their subject-dependent features. To this end, an electric model of the ear was implemented and validated. Simulated and natural TEOAEs were analyzed through a nonlinear analysis technique. The simulated signals were able to reproduce the dynamical features of the experimentally observed TEOAEs and, most importantly, the natural variability among individuals. The unexpected inverse relation between model complexity and adherence to the natural signals is commented.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Zimatore, M. Cavagnaro, A. Giuliani and A. Colosimo, "Reproducing Cochlear Signals by a Minimal Electroacoustic Model," Open Journal of Biophysics, Vol. 2 No. 2, 2012, pp. 33-39. doi: 10.4236/ojbiphy.2012.22005.

References

[1] D. T. Kemp, “Stimulated Acoustic Emissions from within the Human Auditory System,” Journal of the Acoustical Society of America, Vol. 64, No. 5, 1978, pp. 1386-1391. doi:10.1121/1.382104
[2] G. Zimatore, A. Giuliani, C. Parlapiano, G. Grisanti and A. Colosimo, “Revealing Deterministic Structures in Click-Evoked Otoacoustic Emissions,” Journal of Applied Physiology, Vol. 88, No. 4, 2000, pp. 1431-1437.
[3] G. Zimatore, S. Hatzopoulos, A. Giuliani, A. Martini and A. Colosimo, “Comparison of Transient Otoacoustic Emission Responses from Neonatal and Adult Ears,” Journal of Applied Physiology, Vol. 92, No. 6, 2002, pp. 2521-2528.
[4] L. Robles and M. Ruggero, “Mechanics of the Mammalian Cochlea,” Physiological Reviews, Vol. 81, No. 3, 2001, pp. 1305-1352.
[5] H. Wit, P. van Dijk and P. Avan, “Wavelet Analysis of Real Ear and Synthesized Click-Evoked Otoacoustic Emissions,” Hearing Research, Vol. 73, No. 2, 1994, pp. 141-147. doi:10.1016/0378-5955(94)90228-3
[6] R. Lyon and C. Mead, “An Analog Electronic Cochlea,” IEEE Transactions on Acoustic Speech, Signal Processing, Vol. 36, No. 7, 1988, pp. 1119-1134.
[7] C. Giguere and P. Woodland, “A Computational Model of the Auditory Periphery for Speech and Hearing Research. i) Ascending Path,” Journal of the Acoustical Society of America, Vol. 95, No. 1, 1994, pp. 331-342. doi:10.1121/1.408367
[8] C. Giguere and P. Woodland, “A Computational Model of the Auditory Periphery for Speech and Hearing Research. ii) Descending Path,” Journal of the Acoustical Society of America, Vol. 95, No. 1, 1994, 343-349. doi:10.1121/1.408367
[9] J. Merhaud, “Theory of Electroacoustics,” McGraw-Hill, New York, 1981.
[10] C. Shera, Tubis and C. Talmadge, “Do forwardand Backward-Traveling Waves Occur within the Cochlea? Countering the Critique of Nobili et al.,” JARO—Journal of the Association for Research in Otolaryngology, Vol. 5, No. 4, 2004, pp. 349-359. doi:10.1007/s10162-004-4038-1
[11] M. Gardner and M. Hawley, “Network Representations of the External Ear,” Journal of the Acoustical Society of America, Vol. 52, No. 6B, 1972, pp. 1620-1628. doi:10.1121/1.1913295
[12] M. Lutman and A. Martin, “Development of an Electroacoustic Analogue Model of the Middle Ear and Acoustic Reflex,” Journal of Sound and Vibration, Vol. 64, No. 1, 1979, pp. 133-157. doi:10.1016/0022-460X(79)90578-9
[13] M. Suesserman and F. Spelman, “Lumped-Parameter Model for in Vivo Cochlear Stimulation,” IEEE Transactions on Biomedical Engineering, Vol. 40, No. 3, 1993, pp. 237-245. doi:10.1109/10.216407
[14] J. Eckmann, S. Kamphorst and D. Ruelle, “Recurrence Plots of Dynamical Systems,” Europhysics Letters, Vol. 4, No. 9, 1987, pp. 973-977. doi:10.1209/0295-5075/4/9/004
[15] C. Webber and J. Zbilut, “Dynamical Assessment of Physiological Systems and States using Recurrence Plot Strategy,” Journal of Applied Physiology, Vol. 76, No. 2, 1994, pp. 965-973.
[16] A. Giuliani, G. P. V. Marigliano and A. Colosimo, “A Non-Linear Explanation of Aging-Induced Changes in Heartbeat Dynamics,” American Journal of Physiology, Vol. 275, 1998, pp. H1455-H1461
[17] A. Giuliani and C. Webber, “Recurrence Quantification Analysis and Principal Components in Detection of Short Complex Signals,” Physical Letters A, Vol. 237, No. 3, 1998, pp. 131-135. doi:10.1016/S0375-9601(97)00843-8
[18] A. Giuliani, R. Benigni, J. Zbilut, P. Sirabella and A. Colosimo, “Nonlinear Methods in the Analysis of Protein Sequences: A Case Study in Rubredoxins,” Biophysical Journal, Vol. 78, No. 1, 2000, pp. 136-149. doi:10.1016/S0006-3495(00)76580-5
[19] N. Marwan, M. Romano, M. Thiel and J. Kurths, “Recurrence Plots for the Analysis of Complex Systems,” Physics Reports, Vol. 438, No. 5-6, 2007, pp. 237-329. doi:10.1016/j.physrep.2006.11.001
[20] G. Zimatore, S. Hatzopoulos, A. Giuliani, A. Martini and A. Colosimo, “Otoacoustic Emissions at Different Click Intensities: Invariant and Subject Dependent Features,” Journal of Applied Physiology, Vol. 95, 2003, pp. 22992305.
[21] G. von Bekesy, “Experiment in Hearing,” McGraw-Hill Inc., New York, 1960.
[22] L. Zheng, Y. Zhang, F. Yang and D. Ye, “Synthesis and Decomposistion of Transient-Evoked Otoacoustic Emissions based on an Active Auditory Model,” IEEE Transactions on Biomedical Engineering, Vol. 46, No. 9, 1999, pp. 1098-1105. doi:10.1109/10.784141
[23] P. Avan, B. Buki, B. Maat, M. Dordain and H. P. Wit, “Middle Ear Influence on Otoacoustic Emissions,” Hearing Research, Vol. 140, No. 1-2, 2000, pp. 189-201. doi:10.1016/S0378-5955(99)00201-4
[24] A. Giuliani, R. Benigni, J. Zbilut, C. Webber, P. Sirabella and A. Colosimo, “Nonlinear Signal Analysis Methods in the Elucidation of Protein Sequence/Structure Relationships,” Chemical Reviews, Vol. 102, No. 5, 2002, pp. 1471-1491. doi:10.1021/cr0101499
[25] S. Huang, “Reprogramming Cell Fates: Reconciling Rarity with Robustness,” BioEssays, Vol. 31, No. 5, 2009, pp. 546-560. doi:10.1002/bies.200800189
[26] A. Winfree, “The Geometry of Biological Time,” Springer, Berlin, Heidelberg, 2000.
[27] P. Munson and D. Rodbard, “LIGAND: A Versatile Computerized Approach for Characterization of Ligand-binding Systems,” Analytical Biochemistry, Vol. 107, No. 1, 1980, pp. 220-239. doi:10.1016/0003-2697(80)90515-1
[28] B. Moore, “Coding of Sounds in the Auditory System and Its Relevance to Signal Processing and Coding in Cochlear Implants,” Otology and Neurotology, Vol. 24, No. 2, 2003, pp. 243-254. doi:10.1097/00129492-200303000-00019

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.