Share This Article:

Oscillator with Random Mass

Abstract Full-Text HTML Download Download as PDF (Size:234KB) PP. 113-124
DOI: 10.4236/wjm.2012.22013    3,812 Downloads   7,327 Views   Citations
Author(s)    Leave a comment

ABSTRACT

We consider an oscillator with a random mass for which the particles of the surrounding medium adhere to the oscillator for some random time after the collision (Brownian motion with adhesion). This is another form of a stochastic oscillator, different from oscillator usually studied that is subject to a random force or having random frequency or random damping. We calculated first two moments for different form of a random force, and studied different resonance phenomena (stochastic resonance, vibration resonance and “erratic” behavior) interposed between order and chaos.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Gitterman, "Oscillator with Random Mass," World Journal of Mechanics, Vol. 2 No. 2, 2012, pp. 113-124. doi: 10.4236/wjm.2012.22013.

References

[1] M. Gitterman, “The Noisy Oscillator: The First Hundred Years, from Einstein until Now,” World Scientific, Singapore, 2005.
[2] R. Mazo, “Brownian Motion: Fluctuations, Dynamics, and Applications,” Oxford Science Publication, Oxford, 2002.
[3] A. Ishimaru, “Wave Propagation and Scattering in Random Media,” John Wiley and Sons, New York, 1999.
[4] R. Kubo “A Stochastic Theory in Line Shape,” In: K. E. Shuler, Ed., Stochastic Processes in Chemical Physics, Wiley, New York, 1969, pp. 101-128.
[5] O. M. Phillips, “The Dynamics of the Upper Ocean,” Cambridge University Press, Cambridge, 1977.
[6] M. Turelli, “Theoretical Population Biology,” Academic, New York, 1977.
[7] H. Takayasu, A.-H. Sato and M. Takayasu, “Stable Infinite Variance Fluctuations in Randomly Amplified Lan- gevin Systems,” Physical Review Letters, Vol. 79, No. 6, 1997, pp. 966-969. doi:10.1103/PhysRevLett.79.966
[8] B. West and V. Seshadri, “Model of Gravity Wave Growth Due to Fluctuations in the Air-Sea Coupling Pa- rameter,” Journal of Geophysical Research, Vol. 86, No. 5, 1981, pp. 4293-4296. doi:10.1029/JC086iC05p04293
[9] M. Gitterman, “Phase Transitions in Moving Systems,” Physical Review E, Vol. 70, No. 3, 2003, Article ID: 036116. doi:10.1103/PhysRevE.70.036116
[10] A. Onuki, “Phase Transitions of Fluids in Shear Flow,” Journal of Physics: Condensed Matter, Vol. 9, No. 29, 1997, pp. 6119-6159. doi:10.1088/0953-8984/9/29/001
[11] J. M. Chomaz and A. Couairon, “Against the Wind,” Physics of Fluids, Vol. 11, No. 10, 1999, pp. 2977-2984. doi:10.1063/1.870157
[12] F. Hestol and A. Libchaber, “Unidirectional Crystal Growth and Crystal Anisotropy,” Physica Scripta, Vol. 1985, No. 9, 1985, pp. 126-129.
[13] A. Saul and K. Showalter, “Propagating Reaction Diffu- sion Fronts,” In: R. J. Field and M. Burger, Eds., Oscillations and Traveling Waves in Chemical Systems, Wiley, New York, 1985, pp. 419-439.
[14] M. Gitterrman, B. Ya. Shapiro and I. Shapiro, “Phase Transitions in Vortex Matter Driven by Bias Current,” Physical Review B, Vol. 65, No. 17, 2002, Article ID: 174510. doi:10.1103/PhysRevB.65.174510
[15] M. Gitterman, “New Stochastic Equation for a Harmonic Oscillator: Brownian Motion with Adhesion,” Journal of Physics C: Conference Series, Vol. 248, No. 1, 2010, Article ID: 012049.
[16] M. Gitterman “New Type of Brownian Motion,” Journal of Statistical Physics, Vol. 146, No. 1, 2010, pp. 239-243.
[17] M. Gitterman and V. I. Kljatskin, “Brownian Motion with Adhesion: Harmonic Oscillator with Fluctuating Mass,” Physical Review E, Vol. 81, No. 5, 2010, Article ID: 051139.
[18] M. Gitterman and I. Shapiro, “Stochastic Resonance in a Harmonic Oscillator with Random Mass Subject to Asymmetric Dichotomous Noise” Journal of Statistical Physics, Vol. 144, No. 1, 2011, pp. 139-149.
[19] M. Gitterman “Harmonic Oscillator with Fluctuating Mass,” Journal of Modern Physics, Vol. 2, 2010, pp. 1136-1140.
[20] J. Portman, M. Khasin, S. W. Shaw and M. I. Dykman, “The Spectrum of an Oscillator with Fluctuating Mass and Nanomechanical Mass Sensing,” Bulletin of the American Physical Society March Meeting, Portland, 15-19 March 2010.
[21] J. Luczka, P. Hanggi and A. Gadomski, “Diffusion of Clusters with Randomly Growing Masses,” Physical Review E, Vol. 51, No. 6, 1995, pp. 5762-5769. doi:10.1103/PhysRevE.51.5762
[22] M. S. Abdalla, “Time-Dependent Harmonic Oscillator with Variable Mass under the Action of a Driving Force,” Physical Review A, Vol. 34, No. 6, 1986, pp. 4598-4605. doi:10.1103/PhysRevA.34.4598
[23] R. Lambiotte and M. Ausloos, “Brownian Particle Having a Fluctuating Mass,” Physical Review E, Vol. 73, No. 1, 2005, Article ID: 011105.
[24] A. Gadomski and J. Siódmiak, “A Kinetic Model of Protein Crystal Growth in Mass Convection Regime” Crystal Research and Technology, Vol. 37, No. 2-3, 2002, pp. 281-291. doi:10.1002/1521-4079(200202)37:2/3<281::AID-CRAT281>3.3.CO;2-4
[25] M. Rub and A. Gadomski, “Nonequilibrium Thermodynamics versus Model Grain Growth: Derivation and Some Physical Implication,” Physica A, Vol. 326, No. 3-4, 2003, pp. 333-343. doi:10.1016/S0378-4371(03)00282-6
[26] A. Gadomski, J. Siódmiak, I. Santamara-Holek, J. M. Rub and M. Ausloos, “Kinetics of Growth Process Controlled by Mass-Convective Fluctuations and Finite-Size Curvature Effects,” Acta Physica Polonica B, Vol. 36, No. 5, 2005, pp. 1537-1559.
[27] A. T. Pérez, D. Saville and C. Soria, “Modeling the Electrophoretic Deposition of Colloidal Particles,” Europhysics Letters, Vol. 55, No. 3, 2001, pp. 425-431. doi:10.1209/epl/i2001-00431-5
[28] I. Goldhirsch and G. Zanetti, “Clustering Instability in Dissipative Gases,” Physical Review Letters, Vol. 70, No. 11, 1993, pp. 1619-1622. doi:10.1103/PhysRevLett.70.1619
[29] S. Luding and H. J. Herrmann, “Cluster-Growth in Freely Cooling Granular Media,” Chaos, Vol. 9, No. 3, 1999, pp. 673-682. doi:10.1063/1.166441
[30] I. Temizer, “A Computational Model for Aggregation in a Class of Granual Materials,” Master Thesis, University of California, Berkeley, 2001.
[31] W. Benz, “From Dust to Planets,” Spatium, Vol. 6, 2000, pp. 3-15.
[32] J. Blum, et al., “Growth and Form of Planetary Seedlings: Results from a Microgravity Aggregation Experiment,” Physical Review Letters, Vol. 85, No. 12, 2000, pp. 2426- 2429.
[33] J. Blum and G. Wurm, “Experiments on Sticking, Restructuring and Fragmentation of Preplanetary Dust Aggregates,” Icarus, Vol. 143, No. 1, 2000, pp. 138-146. doi:10.1006/icar.1999.6234
[34] S. J. Weidenschilling, D. Spaute, D. R. Davis, F. Marzari and K. Ohtsuki, “Accretional Evolution of a Planetesimal Swarm,” Icarus, Vol. 128, No. 2, 1997, pp. 429-455. doi:10.1006/icar.1997.5747
[35] N. Kaiser, “Review of the Fundamentals of Thin-Film Growth,” Applied Optics, Vol. 41, No. 16, 2002, pp. 3053-3060. doi:10.1364/AO.41.003053
[36] T. Nagatani, “Kinetics of Clustering and Acceleration in 1D Traffic Flow,” Journal of Physical Society Japan, Vol. 65, 1996, pp. 3386-3389. doi:10.1143/JPSJ.65.3386
[37] E. Ben-Naim, P. L. Krapivsky and S. Redner, “Kinetics of Clustering in Traffic Flows,” Physical Review E, Vol. 50, No. 2, 1994, pp. 822-829. doi:10.1103/PhysRevE.50.822
[38] M. Ausloos and K. Ivanova, “Mechanistic Approach to Generalized Technical Analysis of Share Prices and Stock Market Indices,” European Journal of Physics B, Vol. 27, No. 4, 2002, pp. 177-187. doi:10.1007/s10051-002-9018-9
[39] M. Ausloos and K. Ivanova, “Generalized Technical Analysis. Effects of Transaction Volume and Risk,” In: H. Takayasu, Ed., The Applications of Econophysics, Sprin- ger Verlag, Berlin, 2004, pp. 117-124.
[40] V. E. Shapiro and V. M. Loginov, “Formulae of Differentiation” and Their Use for Solving Stochastic Equations,” Physica A, Vol. 91, 1978, pp. 563-574.
[41] M. Gitterman, “Classical Harmonic Oscillator with Mul- tiplicative Noise,” Physica A, Vol. 352, No. 2-4, 2005, pp. 309-334. doi:10.1016/j.physa.2005.01.008
[42] L. Zhang, S. C. Zhong, H. Peng and M. K. Luo, “Sto- chastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise,” Chinese Physics Letters, Vol. 28, No. 9. 2011, Article ID: 090505.
[43] M. Gitterman “Order and Chaos: Are They Contradictory or Complementary?” European Journal of Physics, Vol. 23, No. 2, 2002, pp. 119-122. doi:10.1088/0143-0807/23/2/304
[44] M. I. Dykman, R. Mannela, P. V. E. McClintock, F. Moss, and M. Soskin, “Spectral Density of Fluctuations of a Double-Well Duffing Oscillator Driven by White Noise,” Physical Review A, Vol. 37, No. 4, 1988, pp. 1303-1313. doi:10.1103/PhysRevA.37.1303
[45] A. Fulinski, “Relaxation, Noise-Induced Transitions, and Stochastic Resonance Driven by Non-Markovian Dichotomic Noise,” Physical Review E, Vol. 52, No. 4, 1995, pp. 4523-4526. doi:10.1103/PhysRevE.52.4523
[46] V. Berdichevsky and M. Gitterman, “Multiplicative Stochastic Resonance in Linear Systems: Analytical Solution,” Europhysical Letters, Vol. 36, No. 3, 1996, pp. 161-166. doi:10.1209/epl/i1996-00203-9
[47] R. Benzi, S. Sutera and A. Vulpani, “The Mechanism of Stochastic Resonance,” Journal of Physics A, Vol. 14, No. 11, 1981, pp. 453-458. doi:10.1088/0305-4470/14/11/006
[48] G. Nicolis, “Stochastic Aspects of Climatic Transitions —Response to a Periodic Forcing,” Tellus, Vol. 34, No. 1, 1982, pp. 1-9. doi:10.1111/j.2153-3490.1982.tb01786.x
[49] L. Gammaitoni, P. Hanggi, P. Jung and F. Marchesoni, “Stochastic Resonance,” Review of Modern Physics, Vol. 70, No. 1, 1998, pp. 223-287. doi:10.1103/RevModPhys.70.223
[50] N. G. Stokes, N. D. Stein and V. P. E. McClintock, “Stochastic Resonance in Monostable Systems,” Journal of Physics A, Vol. 26, No. 7, 1993, pp. 385-390. doi:10.1088/0305-4470/26/7/007
[51] F. Marchesoni, “Comment on Stochastic Resonance in Washboard Potentials,” Physics Letters A, Vol. 352, No. 1-2, 1997, pp. 61-64. doi:10.1016/S0375-9601(97)00232-6
[52] M. Gitterman, “Classical Harmonic Oscillator with Multi- plicative Noise,” Physica A, Vol. 352, No. 2-4, 2005, pp. 309-334. doi:10.1016/j.physa.2005.01.008
[53] S.-Q. Jiang, B. Wu and T.-X. Gu, “Stochastic Resonance in a Harmonic Oscillator Fluctuating Intrinsic Frequency by Asymmetric Dichotomous Noise,” Journal of Electronic Science and Technology, Vol. 5, No. 4, 2007, pp. 344-347.
[54] S. Jiang, F. Guo, Y. Zhow and T. Gu, “Stochastic Resonance in a Harmonic Oscillator with Randomizing Dam- ping by Asymmetric Dichotomous Noise,” International Conference on Communications, Circuits and Systems, Kokura, 11-13 July 2007, pp. 1044-1047.
[55] P. S. Landa and P. V. E. McClintock, “Vibrational Resonance,” Journal of Physics A, Vol. 33, No. 45, 2000, pp. 433-438. doi:10.1088/0305-4470/33/45/103
[56] Y. Braiman and I. Goldhirsch, “Taming Chaotic Dynamics With Weak Periodic Perturbations,” Physical Review Letters, Vol. 66, No. 20, 1991, pp. 2545-2548. doi:10.1103/PhysRevLett.66.2545
[57] Y. Kim, S. Y. Lee and S. Y. Kim, “Experimental Observation of Dynamic Stabilization in a Double-Well Duffing Oscillator,” Physics Letters A, Vol. 275, No. 4, 2000, pp. 254-259. doi:10.1016/S0375-9601(00)00572-7
[58] S. Rajasekar, S. Jeyakumari and M. A. F. Sanjuan, “Role of Depth and Location of Minima of a Double-Well Potential on Vibrational Resonance,” Journal of Physics A, Vol. 43, No. 46, 2010, Article ID: 465101.
[59] I. Blekhmam and P. S. Landa, “Conjugate Resonances and Bifurcations in Nonlinear Systems under Biharmoni- cal Excitation,” International Journal of Non-Linear Me- chanics, Vol. 39, No. 3, 2004, pp. 421-426. doi:10.1016/S0020-7462(02)00201-9
[60] J. P. Baltanas, et al., “Experimental Evidence, Numerics, and Theory of Vibrational Resonance in Bistable Sys- tems,” Physical Review E, Vol. 67, No. 6, 2003, Article ID: 066119.
[61] V. N. Chizhevsky and G. Giacomelli, “Improvement of Signal-to-Noise Ratio in a Bistable Optical System: Comparison between Vibrational and Stochastic Resonance,” Physical Review A, Vol. 71, No. 1, 2005, Article ID: 011801.
[62] S. Jeyakumari, V. Chinnathambi, S. Rajasekar and M. A. F. Sanjuan, “Single and Multiple Vibrational Resonance in a Quintic Oscillator with Monostable Potentials,” Physical Review E, Vol. 80, No. 4, 2009, Article ID: 046608.
[63] S. Jeyakumari, V. Chinnathambi, S. Rajasekar and M. A. F. Sanjuan, “Analysis of Vibrational Resonance in a Quintic Oscillator,” Chaos, Vol. 19, No. 4, 2009, Article ID: 043128.
[64] J. C. Chedjou, H. B. Fotsin and P. Woafo, “Behavior of the Van der Pol Oscillator with Two External Periodic Forces,” Physica Scripta, Vol. 55, No. 4, 1997, pp. 390- 393. doi:10.1088/0031-8949/55/4/002
[65] H. G. Schuster and W. Just, “Deterministic Chaos: An Introduction,” Wiley, New York, 2005. doi:10.1002/3527604804
[66] E. Ott, “Chaos in Dynamical Systems,” Cambridge University Press, Cambridge, 2002.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.