Share This Article:

Thermal Characterization of Se80-xTe20Inx Glasses Using Iso-Conversional Methods

Abstract Full-Text HTML Download Download as PDF (Size:766KB) PP. 64-71
DOI: 10.4236/jcpt.2012.22009    3,531 Downloads   6,991 Views   Citations


Alloys of Se80-xTe20Inx glassy system are obtained by quenching technique and crystallization kinetics has been studied using Differential Scanning Calorimetric [DSC] technique. Well defined endothermic and exothermic peaks are ob- served at glass transition temperature (Tg) and crystallization temperature (Tc). From DSC scans, Tc is obtained at dif- ferent heating rates (5, 10, 15, 20, 25 K/min). It is observed that Tc increases with increasing heating rate for a particular glassy alloy. Activation energy of crystallization (Ec) has been calculated by different Non-isothermal Iso-conversional methods, i.e., Kissinger-Akahira-Sunose [KAS], Friedman, Flynn-wall-Ozawa [FWO], Friedman-Ozawa [FO] and Sta-rink methods. It is observed that Ec is dependent on extent of crystallization (α). Activation energy is also found to vary with atomic percentage of In in ternary Se80-xTe20Inx glassy system. The compositional dependence of Ec shows a re-versal in the trend at x = 15 in Se80-xTe20Inx, which is explained in terms of mechanically stabilized structure at this composition.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Shukla, P. Agarwal and A. Kumar, "Thermal Characterization of Se80-xTe20Inx Glasses Using Iso-Conversional Methods," Journal of Crystallization Process and Technology, Vol. 2 No. 2, 2012, pp. 64-71. doi: 10.4236/jcpt.2012.22009.


[1] S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures,” Physical Review Letters, Vol. 21, No. 20, 1968, pp. 1450-1453. doi:10.1103/PhysRevLett.21.1450
[2] M. A. Popescu, “Non Crystalline Chalcogenide,” Kluwer Academic Publishers, Springer, Berlin, 2002.
[3] D. P. Gosain, T. Shimizu, M. Ohmuru, M. Suzuki, T. Bando and S. Okano, “Some Properties of Sb2Te3–xSex or Nonvolatile Memory Based on Phase Transition,” Journal of Materials Science, Vol. 26, No. 12, 1991, pp. 3271- 3274. doi:10.1007/BF01124673
[4] K. Uchino, K. Takada, K. Ohno, H. Yoshida and Y. Ko-bayashi, “High-Density Pulse width Modulation Recording and Rewritable Capability in GeSbTe Phase-Change System Using Visible Laser Beam at Low Lenear Velo- city,” Japanese Journal of Applied Physics, Vol. 32, No. 115, 1993, pp. 5354-5360. doi:10.1143/JJAP.32.5354
[5] N. Nobukuni, M. Takashima, T. Ohno and M. Horie, “Microstructural Changes in GeSbTe Film during Repetitious Overwriting in Phase-Change Optical Recording,” Journal of Applied Physics, Vol. 78, No. 12, 1995, pp. 6980-6989. doi:10.1063/1.360465
[6] M. Nakamura, Y. Wang, O. Matusuda, K. Inoue and K. Murase, “Laser Spot Size Dépendance of Photo-Induced Crystallization Process in Amorphous GeSe2 Film,” Journal of Non-Crystalline Solids, Vol. 198-200, Part 2, 1996, pp. 740-743.
[7] L. Men, F. Jiang and F. Gan, “Short-Wavelength Phase-Change Optical Data Storage in In-Sb-Te Alloy Films,” Materials Science and Engineering: B, Vol. 47, No. 1, 1997, pp. 18-22.
[8] R. V. Woudenberg, “Short Wavelength Phase-Change Re- cording,” Japanese Journal of Applied Physics, Vol. 37, No. 4, 1998, pp. 2159-2162. doi:10.1143/JJAP.37.2159
[9] T. Z. Babeva, D. Dimitrov, S. Kitova and I. Konstantinov, “Optical Properties of Phase Change Optical Disks with SbxSe100–x Films,” Vacuum, Vol. 58, No. 2-3, 2000, pp. 496-501. doi:10.1016/S0042-207X(00)00211-6.
[10] V. I. Mikla, I. P. Mikhalko and V. V. Mikla, “Laser-In- duced Amorphous-to-Crystallite Phase Transition in Sbx Se1?x Alloys,” Materials Science and Engineering: B, Vol. 83, No. 1-3, 2001, pp. 74-78. doi:10.1016/S0921-5107(00)00803-5
[11] A. V. Kolobov and J. Tominaga, “Chalcogenide Glasses in Optical Recording: Recent Progress,” Journal of Opto- electronics and Advanced Materials, Vol. 4, No. 3, 2002, pp. 679-686.
[12] S. A. Khan, M. Zulfequar and M. Husain, “Laser-Induced Amorphisation and Crystallization on Se80Te20–xPbx Thin Films,” Vacuum, Vol. 72, No. 3, 2004, pp. 291-296. doi:10.1016/j.vacuum.2003.08.006
[13] G.-J. Zhang, D.-H. Gu and F.-X. Gan, “Optical Properties and Structure of Sb Rich AgInSbTe Phase Change Thin Films,” Chinese Physics, Vol. 14, No. 1, 2005, p. 218. doi:10.1088/1009-1963/14/1/040
[14] R. E. Simpson, Ph.D. Thesis, University of Southampton, 2008.
[15] A. W. Smith, “Injection Laser Writing on Chalcogenide Films,” Applied Optics, Vol. 13, No. 4, 1974, pp. 795- 798. doi:10.1364/AO.13.000795
[16] Z. H. Khan, M. Zulfequar, M. Illyas, M. Hussain and K. S. Begum, “Electrical and Thermal Properties of a-(Se70T e30)100–x(Se98Bi2)x Alloys,” Current Applied Physics, Vol. 2, No. 2, 2002, pp. 167-174.
[17] N. Mehta, M. Zulfequar and A. Kumar, “Crystallization Kinetics of Some Se-Te-Ag Chalcogenide Glasses,” Journal of Optoelectronics and Advanced Materials, Vol. 6, No. 2, 2004, pp. 441-448.
[18] A. S. Maan and D. R. Goyal, “Study of Crystallization Kinetics of Te5(InxSe100–x)95 Glassy Alloys,” Chalcoge-nide Letters, Vol. 4, No. 8, 2007, pp. 89-96.
[19] A. A. Soliman and M. B. E1-Den, “Crystallization Kinet- ics of the Cu0.3(SSe20)0.7 Chalcogenide Glasses,” Chalcogenide Letters, Vol. 4, No. 3, 2007, pp. 35-47.
[20] A. Ahmad, S. A. Khan, K. Sinha, M. Zulfequar and M. Hussain, “Crystallization and Glass Transition Kinetics in Se80Te20?xCdx Glasses by Using Non-Isothermal Measurement,” The European Physical Journal—Applied Physics, Vol. 38, No. 3, 2007, pp. 211-216. doi:10.1051/epjap:2007097
[21] M. A. Satar, M. A. Abdel-Rahim and A. El-Karashy, “A Study of the Crystallization Kinetics of Ge-Se-Te Glasses,” International Journal of Pure and Applied Physics, Vol. 3, 2007, pp. 59-68.
[22] N. Mehta, K. Singh and A. Kumar, “On the Glass Transition Phenomenon in Se-Te and Se-Ge Based Ternary Chalcogenide Glasses,” Physica B: Condensed Matter, Vol. 404, No. 12-13, 2009, pp. 1835-1839.
[23] M. Saxena and P. K. Bhatnagar, “Crystallization Study of Te-Bi-Se Glasses,” Bulletin of Material Science, Vol. 26, No. 5, 2003, pp. 547-551. doi:10.1007/BF02707355
[24] N. Mehta and A. Kumar, “Composition Dependence of the Activation Energy of the Glass Transition in Some Chalcogenide Glasses,” Philosophical Magazine Letters, Vol. 88, No. 11, 2008, pp. 793-800. doi:10.1080/09500830802385266
[25] M. Avrami, “Kinetics of Phase Change. I General Theory,” Journal of Chemical Physics, Vol. 7, No. 12, 1939, pp. 1103-1109.
[26] M. Avrami, “Kinetics of Phase Change. II Transformation— Time Relations for Random Distribution of Nuclei,” Journal of Chemical Physics, Vol. 8, No. 2, 1940, pp. 212-224.
[27] W. A. Johnson and R. F. Mehl, “Reaction Kinetics in Processes of Nucleation and Growth,” The American Institute of Mining, Metallurgical, and Petroleum Engineers, Vol. 135, No. 8, 1939, pp. 416-442.
[28] M. Brown, “Introduction to Thermal Analysis: Techniques and Applications,” Kluwer Academic Publishers, Dordrecht, 2001.
[29] H. Yinnon and D. Uhlmann, “Applications of Thermo Analytical Techniques to Study the Crystallization Kinetics in Glass-Forming Liquids,” Journal of Non-Crystalline Sol- ids, Vol. 54, No. 7, 1983, pp. 253-275. doi:10.1016/0022-3093(83)90069-8
[30] S. Mahadevan, A. Giridhar and A. K. Singh, “Calorimetric Measurements on As-Sb-Se Glasses,” Journal of Non-Crystalline Solids, Vol. 88, No. 1, 1986, pp. 11-34. doi:10.1016/S0022-3093(86)80084-9
[31] H. E. Kissinger, “Varriation of Peak Temperature with Heating Rate in Diffe-rential Thermal Analysis,” Journal of Research of the National Bureau of Standards, Vol. 57, No. 4, 1956, pp. 217-221.
[32] H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Analytical Chemistry, Vol. 29, No. 11, 1957, pp. 1702-1706. doi:10.1021/ac60131a045
[33] T. Kujirai and T. Akahira, “Scientific Papers of the Institute of Physical and Chemical Research,” Vol. 2, 1925, p. 223.
[34] T. Akahira and T. T. Sunose, “Joint Convention of Four Electrical Institutes,” Report of Research, Chiba Institute of Technology, Vol. 16, 1971, pp. 22-31.
[35] T. Ozawa, “A New Method of Analyzing Thermo Gravimetric Data,” Bulletin of the Chemical Society of Japan, Vol. 38, 1965, pp. 1881-1886.
[36] H. Flynn and A. Wall, “A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data,” Journal of Polymer Science Part B, Vol. 4, No. 5, 1966, pp. 323-328.
[37] T. Ozawa, “Applicability of Friedman Plot,” The Journal of Thermal Analysis and Calorimetry, Vol. 31, No. 3, 1986, pp. 547-551. doi:10.1007/BF01914230
[38] H. L. Friedman, “Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic,” Journal of Polymer Science, Vol. 6, No. 1, 1964, pp. 183-185.
[39] M. J. Starink, “A New Method for the Derivation of Activation Energies from Experiments Performed at Constant Heating Rate,” Thermochimica Acta, Vol. 288, No. 1-2, 1996, pp. 97-104. doi:10.1016/S0040-6031(96)03053-5
[40] M. J. Starink, “The Determination of Activation Energy from Linear Heating Rate Experiments: A Comparison of the Accuracy of the Isoconversion Methods,” Thermochimica Acta, Vol. 404, No. 1-2, 2003, pp. 163-176. doi:10.1016/S0040-6031(03)00144-8
[41] N. Mehta, M. Zul-fequar and A. Kumar, “Crystallization Kinetics of Some Se-Te-Ag Chalcogenide Glasses,” Journal of Optoelectronics and Advanced Materials, Vol. 6, No. 2, 2004, pp. 441-448.
[42] A. S. Maan, D. R. Goyal and A. Kumar, “Study of Crystallization Kinetics of Te5(InxSe100–x)95 Glassy Alloys,” Chalcogenide Letters, Vol. 4, No. 8, 2007, pp. 89-96.
[43] A. K. Agnihotri, A. Kumar and A. N. Nigam, “The K-Ab- sorption Studies in Glassy GexSe100–x,” Philosophical Magazine Letters, Vol. 58, No. 1, 1988, pp. 63-67. doi:10.1080/09500838808214732
[44] S. Asokan, G. Partha-sarthy and E. S. R. Gopal, “Pressure Dependence of Conductivity,” Philosophical Magazine Part B, Vol. 57, No. 1, 1988, pp. 49-55. doi:10.1080/13642818808205722
[45] J. C. Phillips and M. F. Thorpe, “Constraint Theory, Vector Percolation and Glass Formation,” Solid State Communications, Vol. 53, No. 8, 1985, pp. 699-702. doi:10.1016/0038-1098(85)90381-3

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.