Share This Article:

Automatic determination of MS lesion subtypes based on fractal analysis in brain MR images

Abstract Full-Text HTML Download Download as PDF (Size:287KB) PP. 162-169
DOI: 10.4236/jbise.2012.54021    3,176 Downloads   5,724 Views  

ABSTRACT

In this paper a novel approach based on fractal analysis has been proposed to determine MS lesions into two subtypes (i.e., Enhancing lesions (Acute), T1 “black holes” (chronic) lesions) in Fluid Attenuated Inversion Recovery (FLAIR) MR images, automatically. In the proposed method, firstly, MS lesion voxels are segmented in FLAIR images using Entropy-Based EM Algorithm and Markov Random Field (MRF) model. Then, Fractal dimension of each lesion voxel is computed in FLAIR images and used with signal intensity features (T1-weighted, gadolinium enhanced T1-weighted, T2-weighted). Finally, a neural network classifier is applied to feature vectors. Evaluation of the proposed method was performed by manual segmentation of chronic and acute lesions in gadolinium enhanced T1-weighted (Gad-E-T1-w) images by studying T1-weighted (T1-w) and T2-weighted (T2-w) images, using similarity criteria. The results showed a good correlation between the lesions segmented by the proposed method and by experts manually. Thus, the suggested method is useful to reduce the need for paramagnetic materials in contrast enhanced MR imaging which is a routine procedure for separation of acute and chronic lesions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mohamadkhanloo, M. , Mehrabi, F. and Sohrabi, A. (2012) Automatic determination of MS lesion subtypes based on fractal analysis in brain MR images. Journal of Biomedical Science and Engineering, 5, 162-169. doi: 10.4236/jbise.2012.54021.

References

[1] Mortazavi, D., Kouzani, A.Z. and Soltanian-Zadeh, H. (2011) Segmentation of multiple sclerosis lesions in MR images: A review. Diagnostic Neuroradiology, 54, 299-320. doi:10.1007/s00234-011-0886-7
[2] Wu, Y., Warfield, S.K., Tan, I.L., Wells, W.M. III, Meier, D.S., van Schijndel, R.A., Barkhof, F. and Guttmann, C.R. (2006) Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. NeuroImage, 32 1205-1215. doi:10.1016/j.neuroimage.2006.04.211
[3] Khayati, R., Vafadust, M., Towhidkhah, F. and Nabavi, S.M. (2007) A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Computerized Medical Imaging and Graphics, 32, 124-133. doi:10.1016/j.compmedimag.2007.10.003
[4] Samarasekera, S., Udupa, J.K., Miki, Y., Wei, L. and Grossman, R.I. (1997) A new computer-assisted method for the Quantification of Enhancing Lesions in Multiple Sclerosis. Journal of Computer Assisted Tomography, 21, 145-151. doi:10.1097/00004728-199701000-00028
[5] He, R. and Narayana, P.A. (2002) Automatic delineation of Gd enhancements on magnetic resonance images in multiple sclerosis. Medical Physics, 29, 1536-1546. doi:10.1118/1.1487422
[6] Filippi, M., Rovaris, M., Campi, A., Pereira, C. and Comi, G. (1996) Semiautomated thresholding technique for measuring lesion volumes in multiple sclerosis: Effects of the change of the threshold on the computed lesion loads. Acta Neurologica Scandinavica, 93, 30-34. doi:10.1111/j.1600-0404.1996.tb00166.x
[7] Rovaris, M., Filippi, M., Calori, G., et al. (1997) Intraobserver reproducibility in measuring new putative MR markers of demyelination and axonal loss in multiple sclerosis: A comparison with conventional T2-weighted images. Journal of Neurology, 244, 266-270. doi:10.1007/s004150050083
[8] Filippi, M., Horsfield, M.A., Hajnal, J.V., et al. (1996) Quantitative assessment of magnetic resonance imaging lesion load in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 64, S88-S93. doi:10.1093/brain/119.4.1349
[9] Khayati, R., Vafadust, M., Towhidkhah, F. and Nabavi, S.M. (2008) Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model. Computers in Biology and Medicine, 38, 379-390. doi:10.1016/j.compbiomed.2007.12.005
[10] Polman, C.H., Reingold, S.C., Edan, G., Fillippi, M., Hartung, H.P. and Kappos, L. (2005) Diagnostic criteria for MS 2005 revisions to the MC Donald criteria. Annals of Neurology, 58, 840-846. doi:10.1002/ana.20703
[11] Edelman, R.R., Hesselink, J.R., Zlatkin, M.B. and Crues, J.V. (2006) Clinical magnetic resonance imaging. 3rd Edition, Saunders, Philadelphia, 1571-1615.
[12] Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C. and van der Grond, J. (2004) Probabilistic segmentation of white matter lesions in MR imaging. Neuro Image, 21, 1037-1044. doi:10.1016/j.neuroimage.2003.10.012
[13] Khayati, R. (2006) Quantification of multiple sclerosis lesions based on fractal analysis. Ph.D. Thesis, Amirkabir University of Technology, Tehran.
[14] Bijar, A., Khanloo, M.M., Benavent, A.P. and Khayati, R. (2011) Segmentation of MS lesions using entropy-based EM algorithm and Markov random fields. Journal of Biomedical Science and Engineering, 4, 552-561. doi:10.4236/jbise.2011.48071
[15] Mandelbrot, B.B. and Freeman, W.H. (1983) The Fractal Geometry of Nature, San Francisco, 1982. No. of pages: 460. Earth Surface Processes and Landforms, 8, 406. doi:10.1002/esp.3290080415
[16] Gonzalez, R.C., Woods, R.E. and Eddins, S.L. (2002) Digital Image Processing Using Matlab, Pearson Prentice Hall, Upper Saddle River. doi:10.1117/1.3115362
[17] Zijdenbos, A.P., Dawant, B.M., Margolin, R.A. and Palmer, A.C. (1994) Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging, 13, 716-724. doi:10.1109/42.363096
[18] Stokking, R., Vincken, K.L. and Viergever, M.A. (2000) Automatic morphology based brain segmentation (MBRASE) from MRI-T1 data. NeuroImage, 12, 726-738. doi:10.1006/nimg.2000.0661
[19] Bartko, J.J. (1991) Measurement and reliability: Statistical thinking considerations. Schizophrenia Bulletin, 17, 483-489. doi:10.1093/schbul/17.3.483
[20] Johnston, B., Atkins, M.S., Mackiewich, B. and Anderson, M. (1996) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Transactions on Medical Imaging, 15, 154-169. doi:10.1109/42.491417
[21] Boudraa, A.O., Dehakb, S.M.R., Zhu, Y.M., Pachai, C., Bao, Y.G. and Grimaud, J. (2000) Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Computers in Biology and Medicine, 30, 23-40. doi:10.1016/S0010-4825(99)00019-0
[22] Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A. and Suetens, P. (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging, 20, 677-688. doi:10.1109/42.938237
[23] Zijdenbos, A.P., Forghani, R. and Evans, A.C. (2002) Automatic pipeline analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis, IEEE Transactions on Medical Imaging, 21, 1280-1291. doi:10.1109/TMI.2002.806283

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.