Consideration of Castability and Formability for New Magnesium Alloys

Abstract

A comprehensive consideration based on castability or plastic formability, as well as mechanical properties for development of either cast magnesium alloys or wrought magnesium alloys is a very important issue. To develop new magnesium alloy sheets with high formability at room temperature, the microstructure, texture, ductility and anisotropy of rolled Mg-Zn-Gd alloy sheets were investigated. The sheets exhibit an excellent ultimate elongation of nearly 50% and an uniform elongation greater than 30% with a very low planar anisotropy. The new sheet has a random basal texture and the basal pole is tilted by maximum 40° from the normal direction towards the transverse direction. The majority of grains in the tilted texture have an orientation favorable for both basal slip and tensile twining because of their high Schmid factor. The low planar anisotropy, the large uniform elongations and the high strain hardening rate observed in the Mg-Zn-Gd sheets result in excellent room temperature formability, the Erichsen values reach ~8, well comparable with the conventional aluminum alloys sheets at room temperature. The solidification pathways and phase equilibria of Mg-Al-Ca alloys have been profoundly investigated by using thermal analysis and thermodynamic calculations. The relationship between hot tearing tendency and alloy compositions were discussed in terms of strength of the mushy zone, solidification pathways and feeding mechanisms, et al. Thixoforming refers to as that metal components are formed in their semi-solid state. Criteria for thixoforming are summarized and then the thixoformability of Mg-Al-Ca based alloys (AC alloys) are evaluated using the thermodynamic calculations based on the consideration of metallurgical parameters.

Share and Cite:

R. Chen, S. Liang, D. Wu and E. Han, "Consideration of Castability and Formability for New Magnesium Alloys," Open Journal of Metal, Vol. 2 No. 1, 2012, pp. 8-17. doi: 10.4236/ojmetal.2012.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi, “Ductility Enhancement in AZ31 Magnesium Alloy by Controlling Its Grain Structure,” Scripta Materialia, Vol. 45, No. 1, 2001, pp. 89-94. doi:10.1016/S1359-6462(01)00996-4
[2] R. Gehrmann, M. M. Frommert and G. Gottstein, “Texture Effects on Plastic Deformation of Magnesium,” Materials Science and Engineering: A, Vol. 395, No. 1-2, 2005, pp. 338-349. doi:10.1016/j.msea.2005.01.002
[3] Y. Chino, J.-S. Lee, K. Sassa, A. Kamiya and M. Mabuchi, “Press Formability of a Rolled AZ31 Mg Alloy Sheet with Controlled Texture,” Materials Letters, Vol. 60, No. 2, 2006, pp. 173-176. doi:10.1016/j.matlet.2005.08.012
[4] N. Stanford, D. Atwell and M. R. Barnett, “The Effect of Gd on the Recrystallisation, Texture and Deformation Behaviour of Magnesium-Based Alloys,” Acta Materialia, Vol. 58, No. 20, 2010, pp. 6773-6783. doi:10.1016/j.actamat.2010.09.003
[5] S. Sandl?bes, S. Zaefferer, I. Schestakow, S. Yi and R. Gonzalez-Martinez, “On the role of Non-Basal Deformation Mechanisms for the Ductility of Mg and Mg-Y Alloys,” Acta Materialia, Vol. 59, No. 2, 2011, pp. 429-439. doi:10.1016/j.actamat.2010.08.031
[6] Y. Chino, K. Sassa and M. Mabuchi, “Tensile Properties and Stretch Formability of Mg-1.5 mass%Zn-0.2 mass%Ce Sheet Rolled at 723K,” Materials Transactions, Vol. 49, No. 7, 2008, pp. 1710-1712. doi:10.2320/matertrans.MEP2008136
[7] Y. Chino, K. Sassa and M. Mabuchi, “Texture and Stretch Formability of Mg-1.5 mass%Zn-0.2 mass%Ce Alloy Roll- ed at Different Rolling Temperature,” Materials Trans- actions, Vol. 49, No. 12, 2008, pp. 2916-2918. doi:10.2320/matertrans.MEP2008257
[8] Y. Chino, K. Sassa and M. Mabuchi, “Texture and Stretch Formability of a Rolled Mg–Zn Alloy Containing Dilute Content of Y,” Materials Science and Engineering: A, Vol. 513-514, No. 1, 2009, pp. 394-400. doi:10.1016/j.msea.2009.01.074
[9] H. Yan, R. S. Chen and E. H. Han, “Room-Temperature Ductility and Anisotropy of Two Rolled Mg–Zn–Gd Alloys,” Materials Science and Engineering: A, Vol. 527, No. 15, 2010, pp. 3317-3322. doi:10.1016/j.msea.2010.02.038
[10] A. A. Luo, “Recent Magnesium Alloy Development for Elevated Temperature Applications,” International Materials Reviews, Vol. 49, No. 1, 2004, pp. 13-30. doi:10.1179/095066004225010497
[11] S.-H. Ha, J.-K. Lee, H.-H. Jo, S.-B. Jung and S. K. Kim, “Behavior of CaO and Calcium in pure Magnesium,” Rare Metals, Vol. 25, No. 6, 2006, pp. 150-154. doi:10.1016/S1001-0521(08)60071-6
[12] Y. Terada, D. Itoh and T. Sato, “Creep Rupture Properties of Die-Cast Mg-Al-Ca Alloys,” Materials Chemistry and Physics, Vol. 113, No. 2-3, 2009, pp. 503-506. doi:10.1016/j.matchemphys.2008.09.015
[13] A. A. Luo, B. R. Powell and M. P. Balogh, “Creep and Microstructure of Magnesium-Aluminum-Calcium Based Alloys,” Metallurgical and Materials Transactions A, Vol. 33, No. 3, 2002, pp. 567-574. doi:10.1007/s11661-002-0118-1
[14] B. Tang, S.-S. Li, X.-S. Wang, D.-B. Zeng and R. Wu, “Effect of Ca/Sr Composite Addition into AZ91D Alloy on Hot-Crack Mechanism,” Scripta Materialia, Vol. 53, No. 9, 2005, pp. 1077-1082. doi:10.1016/j.scriptamat.2005.06.039
[15] J. O. Andersson, T. Helander, L. H?glund, P. Shi and B. Sundman, “Thermo-Calc & DICTRA, Computational Tools for Materials Science,” Calphad, Vol. 26, No. 2, 2002, pp. 273-312. doi:10.1016/S0364-5916(02)00037-8
[16] Y. Zhong, “Investigation in Mg-Al-Ca-Sr-Zn System by Computational Thermodynamics Approach Coupled with First-Principles Energetics and Experiments,” Ph.D. Thesis, the Pennsylvania State University, Pennsylvania, 2005.
[17] Y. Liu, G. Yuan, S. Zhang, X. Zhang, C. Lu and W. Ding, “Effects of Zn/Gd Ratio and Content of Zn, Gd on Phase Constitutions of Mg Alloys,” Materials Transactions, Vol. 49, No. 5, 2008, pp. 941-944. doi:10.2320/matertrans.MC200767
[18] Z. P. Luo and H. Hashimoto, “High-Resolution Electron Microscopy Observation of a New Crystalline Approximant W’ of Mg-Zn-Y Icosahedral Quasicrystal,” Micron, Vol. 31, No. 5, 2000, pp. 487-492. doi:10.1016/S0968-4328(99)00128-6
[19] N. Stanford and M. R. Barnett, “The Origin of ‘Rare Earth’ Texture Development in Extruded Mg-Based Alloys and Its Effect on Tensile Ductility,” Materials Science and Engineering: A, Vol. 496, No. 1-2, 2008, pp. 399-408. doi:10.1016/j.msea.2008.05.045
[20] J. Bohlen, M. R. Nurnberg, J. W. Senn, D. Letzig and S. R. Agnew, “The Texture and Anisotropy of Magnesium- Zinc-Rare Earth Alloy Sheets,” Acta Materialia, Vol. 57, No. 6, 2007, pp. 2101-2112. doi:10.1016/j.actamat.2006.11.013
[21] M. R. Barnett, M. D. Naveaa and C. J. Bettles, “Deformation Microstructures and Textures of Some Cold Rolled Mg Alloys,” Materials Science and Engineering: A, Vol. 386, No. 1-2, 2004, pp. 205-211. doi:10.1016/j.msea.2004.07.030
[22] F. Kaiser, D. Letzig, J. Bohlen, A. Styczynski, Ch. Hartig and K. U. Kainer, “Anisotropic Properties of Magnesium Sheet AZ31,” Materials Science Forum, Vol. 419-422, No. 1, 2003, pp. 315-320. doi:10.4028/www.scientific.net/MSF.419-422.315
[23] X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito, “Mechanical Properties of Mg-Al-Zn Alloy with a Tilted Basal Texture Obtained by Differential Speed Rolling,” Materials Science and Engineering: A, Vol. 488, No. 1-2, 2008, pp. 214-220. doi:10.1016/j.msea.2007.11.029
[24] Y. Chino and M. Mabuchi, “Enhanced Stretch Formability of Mg-Al-Zn Alloy Sheets Rolled at High Temperature (723 K),” Scripta Materialia, Vol. 60, No. 6, 2009, pp. 447-450. doi:10.1016/j.scriptamat.2008.11.029
[25] X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito, “Improvement of Formability of Mg-Al-Zn Alloy Sheet at Low Temperatures Using Differential Speed Rolling,” Journal of Alloys and Compounds, Vol. 470, No. 1-2, 2009, pp. 263-268. doi:10.1016/j.jallcom.2008.02.029
[26] Japan Light Metal Association, “Aluminum Handbook,” Japan Light Metal Association, Tokyo, 2000.
[27] M. Sugamata, J. Kaneko and M. Numa, “Evaluation of Formability of Light Metal Sheets at High Temperatures by Conical Cup and Erichsen Tests,” Journal of the Japan Society for Technology of Plasticity, Vol. 41, No. 470, 2000, pp. 233-238. doi:j-east/article/200011/000020001100A0402883
[28] Y. Chino, M. Kado and M. Mabuchi, “Enhancement of Tensile Ductility and Stretch Formability of Magnesium by Addition of 0.2 wt%(0.035 at%)Ce,” Materials Science and Engineering: A, Vol. 494, No. 1-2, 2008, pp. 343-349. doi:10.1016/j.msea.2008.04.059
[29] A. K. Dahle and L. Arnberg, “Development of Strength in Solidifying Aluminium Alloys,” Acta Materialia, Vol. 45, No. 2, 1997, pp. 547-559. doi:10.1016/S1359-6454(96)00203-0
[30] S. M. Liang, R. S. Chen, J. J. Blandin, M. Suery and E. H. Han, “Thermal Analysis and Solidification Pathways of Mg-Al-Ca System Alloys,” Materials Science and Engineering: A, Vol. 480, No. 1-2, 2008, pp. 365-372. doi:10.1016/j.msea.2007.07.025
[31] D. G. Eskin, Suyitno and L. Katgerman, “Mechanical Properties in the Semi-Solid State and Hot Tearing of Aluminium Alloys,” Progress in Materials Science, Vol. 49, No. 5, 2004, pp. 629-711. doi:10.1016/S0079-6425(03)00037-9
[32] A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer and D. H. StJohn, “Development of the As-Cast Microstructure in Magnesium-Aluminium Alloys,” Journal of Light Metals, Vol. 1, No. 1, 2001, pp. 61-72. doi:10.1016/S1471-5317(00)00007-9
[33] M. B. Djurdjevic and R. Schmid-Fetzer, “Thermodynamic Calculation as a Tool For Thixoforming Alloy and Process Development,” Materials Science and Engineering: A, Vol. 417, No. 1-2, 2006, pp. 24-33. doi:10.1016/j.msea.2005.08.227

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.