Share This Article:

Adaptive Internal Model Control of a DC Motor Drive System Using Dynamic Neural Network

Abstract Full-Text HTML Download Download as PDF (Size:834KB) PP. 168-189
DOI: 10.4236/jsea.2012.53024    5,859 Downloads   10,662 Views   Citations

ABSTRACT

This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal model control are the choice of architectures, learning algorithms, and examples of learning. The choice of parametric adaptation algorithm for updating elements of the conventional adaptive internal model control shows limitations. To overcome these limitations, we chose the architectures of neural networks deduced from the conventional models and the Levenberg-marquardt during the adjustment of system parameters of the adaptive neural internal model control. The results of this latest control showed compensation for disturbance, good trajectory tracking performance and system stability.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

F. Zouari, K. Ben Saad and M. Benrejeb, "Adaptive Internal Model Control of a DC Motor Drive System Using Dynamic Neural Network," Journal of Software Engineering and Applications, Vol. 5 No. 3, 2012, pp. 168-189. doi: 10.4236/jsea.2012.53024.

References

[1] A. Datta and J. Ochoa, “Adaptive Internal Model Control: Design and Stability Analysis,” Automatica, Vol. 32, No. 2, 1996, pp. 261-266. doi:10.1016/0005-1098(96)85557-9
[2] C.-H. Choi and H.-C. Kim, “A robust internal model adaptive controller,” Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, 10-12 December 1997, pp. 2758-2761.
[3] L. Xing and A. Datta, “Decentralized Adaptive Internal Model Control for Multi-Input Multi-Output Systems,” American Control Conference, San Diego, 2-4 June 1999, pp. 39-46.
[4] Q. P. Hu and G. P. Rangaiah, “Adaptive Internal Model Control of Nonlinear Processes,” Chemical Engineering Science, Vol. 54, No. 9, 1999, pp. 1205-1220. doi:10.1016/S0009-2509(98)00543-0
[5] G. J. Silva and A. Datta, “Adaptive Internal Model Control: The Discrete-Time Case,” International Journal of Adaptive Control and Signal Processing, Vol. 15, No.1, 2001, pp. 15-36. doi:10.1002/1099-1115(200102)15:1<15::AID-ACS625>3.0.CO;2-I
[6] M. Shafiq and S. H. Riyaz, “Internal Model Control Structure Using Adaptive Inverse Control Strategy,” 4th International Conference on Control and Automation, Montreal, 12-12 June 2003, pp. 148-152.
[7] D. Rupp and L. Guzzella, “Adaptive Internal Model Control with Application to Fueling Control,” Control Engineering Practice, Vol. 18, No. 8, 2010, pp. 873-881. doi:10.1016/j.conengprac.2010.03.011
[8] F. X. Xu, G. Xia, M. Zeng, B. K. Sun and X. Z. Zhao, “Improvement of Precision for Pendulous Integrating Gyro Accelerometer via Adaptive Internal Model Control,” Journal of Systems Engineering and Electronics, Vol. 18, No. 4, 2007, pp. 841-845. doi:10.1016/S1004-4132(08)60029-8
[9] C. Cheng and M.-S. Chiu, “Adaptive IMC Controller Design for Nonlinear Process Control,” Chemical Engineering Research and Design, Vol. 85, No. 2, 2007, pp. 234-244. doi:10.1205/cherd06071
[10] Y. Kansha, J. Li and M.-S. Chiu, “Adaptive IMC Controller Design Using Linear Multiple Models,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 41, No. 4, 2010, pp. 446-452. doi:10.1016/j.jtice.2010.04.002
[11] N. R. Lakshmi Narayanan, P. R. Krishnaswamy and G. P. Rangaiah, “An Adaptive Internal Model Control Strategy for PH Neutralization,” Chemical Engineering Science, Vol. 52, No. 18, 1997, pp. 3067-3074. doi:10.1016/S0009-2509(97)00130-9
[12] A. Mehmood, S. Laghrouche and M. El Bagdouri, “Modeling Identification and Simulation of Pneumatic Actuator for VGT System,” Sensors and Actuators A: Physical, Vol. 165, No. 2, 2011, pp. 367-378. doi:10.1016/j.sna.2010.11.006
[13] R.-F. Fung, Y.-S. Kung and G.-C. Wu, “Dynamic Analysis and System Identification of an LCD Glass-Handling Robot Driven by a PMSM,” Applied Mathematical Modelling, Vol. 34, No. 5, 2010, pp. 1360-1381. doi:10.1016/j.apm.2009.08.020
[14] J. R. Rodriguez Vasquez, R. Rivas Perez, J. Sotomayor Moriano and J. R. Peran Gonzalez, “System Identification of Steam Pressure in a Fire-Tube Boiler,” Computers and Chemical Engineering, Vol. 32, No. 12, 2008, pp. 2839- 2848. doi:10.1016/j.compchemeng.2008.01.010
[15] M. Modabberifar, Y. Hojjat, A. Abdullah and M. Dadkhah, “Analysis of the Dynamic Characteristics of a Three Phase Panel Type Electrostatic Actuator Using Pem System Identification Method,” Sensors and Actuators A: Physical, Vol. 151, No. 2, 2009, pp. 173-178. doi:10.1016/j.sna.2009.01.019
[16] X. Z. Wei, “Least-Squares Identification of a Class of Multivariable Systems with Correlated Disturbances,” Journal of the Franklin Institute, Vol. 336, No. 8, 1999, pp. 1309-1324. doi:10.1016/S0016-0032(99)00038-1
[17] Q. Z. Zou and S. Devasia, “Precision Preview-Based Stable-Inversion for Nonlinear Nonminimum-Phase Systems: The VTOL Example,” Automatica, Vol. 43, No. 1, 2007, pp. 117-127. doi:10.1016/j.automatica.2006.08.007
[18] L. R. Hunt and G. Meyer, “Stable Inversion for Nonlinear Systems,” Automatica, Vol. 33, No. 8, 1997, pp. 1549-1554. doi:10.1016/S0005-1098(97)00064-2
[19] N. Kazantzis, “A New Approach to The Zero-Dynamics Assignment Problem for Nonlinear Discrete-Time Systems Using Functional Equations,” Systems & Control Letters, Vol. 51, No. 3-4, 2004, pp. 311-324. doi:10.1016/j.sysconle.2003.03.001
[20] A. Piazzi and A. Visioli, “A Noncausal Approach for PID Control,” Journal of Process Control, Vol. 16, No. 8, 2006, pp. 831-843. doi:10.1016/j.jprocont.2006.03.001
[21] M. T. Nihtil?, “Adaptive Control of a Continuous-Time System with Time-Varying Input Delay,” Systems & Control Letters, Vol. 12, No. 4, 1989, pp. 357-364. doi:10.1016/0167-6911(89)90046-7
[22] C. Kambhampati, R. J. Craddock, M. Tham and K. Warwick, “Inverse Model Control Using Recurrent Networks,” Mathematics and Computers in Simulation, Vol. 51, No. 3-4, 2000, pp. 181-199. doi:10.1016/S0378-4754(99)00116-0
[23] S. Suresh and N. Kannan, “Direct Adaptive Neural Flight Control System for an Unstable Unmanned Aircraft,” Applied Soft Computing, Vol. 8, No. 2, 2008, pp. 937-948. doi:10.1016/j.asoc.2007.07.009
[24] M. Morari and E. Zafirou, “Robust Process Control,” Prentice Hall, Englewood Cliffs, 1989.
[25] P. Larminat, “Commande des Systèmes Linéaires,” Hermès, Paris, 1993.
[26] G. Duc, “Robustesse des systèmes linéaires multi-variables,” Cours de l’Ecole Supérieure d’Electricité, France, 1993.
[27] Scorletti G., “Approche Unifiée de l’Analyse et de la Commande des Systèmes par Formulation LMI,” Thèse de Doctorat, Université Paris XI, Orsay, 1997.
[28] A. J. Fossard, “La Régulation Industrielle: Régulateur PID, Prédictifs et Flous,” Hermès, Paris, 1994.
[29] C. Keyes, “Guide de Référence sur l’Efficacité Energétique de Moteurs,” CEA Technologies Inc., Fyshwick, 2007.
[30] S. Weerasooriya and M. A. El-Sharkawi, “Identification and Control of a DC Motor Using Back-Propagation Neural Networks,” IEEE Transactions on Energy Conversion, Vol. 6, No. 4, 1991, pp. 663-669. doi:10.1109/60.103639
[31] N. Amuthan and S. N. Singh, “Direct Model Reference Adaptive Internal Model Controller for DFIG Wind Farms,” International Journal of Recent Trends in Engineering, Vol. 1, No. 1, 2009, pp. 7-11.
[32] P. M. Frank, “Entwurf von Regelkreisen mit Vorgeschriebenem Verhalten,” Paperback, G. Braun Verlag, Karlsruhe, 1974.
[33] R. Abdennour, P. Borne, M. Ksouri and F. M’sahli, “Méthodes et Pratiques de l’Ingénieur: Identification et Commande Numérique des Procédés Industriels,” Editions Technip, Paris, 2001.
[34] A. V. Silaev, “Parametric Adaptation Algorithm for The Basic Law Used to Control Orientation of a Large Space Structure on the Base of Flexible Modes Envelope Estimation,” Automation and Remote Control, Vol. 71, No. 5, 2010, pp. 911-919. doi:10.1134/S000511791005019X
[35] A. Diala, “Modélisation Dynamique et Supervision Des fours de Réchauffage Continus de la Sidérurgie,” Thèse de Doctorat, Ecole des Mines de Paris, 2006.
[36] K. J. Hunt and D. Sbarbaro, “Neural Networks for Nonlinear Internal Model Control,” IEE Proceedings D of Control Theory and Applications, Vol. 138, No. 5, 1991, pp. 431-438.
[37] I. Rivals and L. Personnaz, “Nonlinear Internal Model Control Using Neural Networks: Application to Processes With Delay and Design Issues,” IEEE Transactions on Neural Networks, Vol. 11, No. 1, 2000, pp. 80-90. doi:10.1109/72.822512
[38] S. Bel Hadj Ali, A. El Abed-Abdelkrim and M. Benrejeb, “An Internal Model Control Strategy Using Artificial Neural Networks for a Class of Nonlinear Systems,” 2002 IEEE International Conference on Systems, Man and Cybernetics, 6-9 October 2002, p. 4.
[39] K. Nouri, R. Dhaouadi and N. B. Braiek, “Adaptive Control of a Nonlinear DC Motor Drive Using Recurrent Neural Networks,” Applied Soft Computing, Vol. 8, No. 1, 2008, pp. 371-382. doi:10.1016/j.asoc.2007.03.002
[40] H. Q. Zhao and J. S. Zhang, “A Novel Nonlinear Adaptive Filter Using a Pipelined Second-Order Volterra Recurrent Neural Network,” Neural Networks, Vol. 22, No. 10, 2009, pp. 1471-1483. doi:10.1016/j.neunet.2009.05.010
[41] M. Hermans and B. Schrauwen, “Memory in Linear Recurrent Neural Networks in Continuous Time,” Neural Networks, Vol. 23, No. 3, 2010, pp. 341-355. doi:10.1016/j.neunet.2009.08.008
[42] H. Q. Zhao, X. P. Zeng, J. S. Zhang, Y. G. Liu, X. M. Wang and T. R. Li, “A Novel Joint-Processing Adaptive Nonlinear Equalizer Using a Modular Recurrent Neural Network for Chaotic Communication Systems,” Neural Networks, Vol. 24, No. 1, 2011, pp. 12-18. doi:10.1016/j.neunet.2010.09.009
[43] M. Syed Ali and M. Marudai, “Stochastic Stability of Discrete-Time Uncertain Recurrent Neural Networks with Markovian Jumping and Time-Varying Delays,” Mathematical and Computer Modelling, Vol. 54, No. 9-10, 2011, pp. 1979-1988. doi:10.1016/j.mcm.2011.05.004
[44] F. M. Dias, A. Antunes, J. Vieira and A. Mota, “A Sliding Window Solution for the on-Line Implementation of the Levenberg—Marquardt Algorithm,” Engineering Applications of Artificial Intelligence, Vol. 19, No. 1, 2006, pp. 1-7. doi:10.1016/j.engappai.2005.03.005
[45] B. G. Kermani, S. S. Schiffman and H. T. Nagle, “Performance of the Levenberg—Marquardt Neural Network Training Method in Electronic Nose Applications,” Sensors and Actuators B: Chemical, Vol. 110, No. 1, 2005, pp. 13-22. doi:10.1016/j.snb.2005.01.008
[46] V. Singh, I. Gupta and H. O. Gupta, “ANN-Based Estimator for Distillation Using Levenberg—Marquardt Approach,” Engineering Applications of Artificial Intelligence, Vol. 20, No. 2, 2007, pp. 249-259. doi:10.1016/j.engappai.2006.06.017
[47] A. A. Suratgar, M. B. Tavakoli and A. Hoseinabadi, “Modified Levenberg-Marquardt Method for Neural Networks Training,” World Academy of Science, Engineering and Technology, Vol. 6, 2005, pp. 46-48.
[48] Y. Tanoto, W. Ongsakul and C. O. P. Marpaung, “Levenberg-Marquardt Recurrent Networks for Long- Term Electricity Peak Load Forecasting,” Telkomnika, Vol. 9, No. 2, 2011, pp. 257-266.
[49] C. M. Bishop, “Neural Networks for Pattern Recognition,” Oxford University Press, Oxford, 1995.
[50] F. Rotella and P. Borne, “Théorie et Pratique du Calcul Matriciel,” Editions Technip, Paris, 1995.
[51] Z. Dostál, T. Kozubek, A. Markopoulos and M. Men?ík, “Cholesky Decomposition of A Positive Semi Definite Matrix with Known Kernel,” Applied Mathematics and Computation, Vol. 217, No. 13, 2011, pp. 6067-6077. doi:10.1016/j.amc.2010.12.069
[52] A. A. Adegbege and W. P. Heath, “Stability Conditions for Constrained Two-Stage Internal Model Control,” 49th IEEE Conference on Decision and Control (CDC), Atlanta, 15-17 December 2010, pp. 5251-5256.
[53] R. Isermann, “Practical Aspects of Process Identification,” Automatica, Vol. 16, No. 5, 1980, pp. 575-585. doi:10.1016/0005-1098(80)90079-5
[54] J. E. Nash and J. V. Sutcliffe, “River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles,” Journal of Hydrology, Vol. 10, No. 3, 1970, pp. 282-290. doi:10.1016/0022-1694(70)90255-6
[55] S. A. Billings and Q. M. Zhu, “Nonlinear Model Validation Using Correlation Tests,” International Journal of Control, Vol. 60, No. 6, 1994, pp. 1107-1120. doi:10.1080/00207179408921513
[56] S. A. Billings, H. B. Jamaluddin and S. Chen, “Properties of Neural Networks with Applications to Modelling Non-Linear Dynamical Systems,” International Journal of Control, Vol. 55, No. 1, 1992, pp. 193-224. doi:10.1080/00207179208934232

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.