Share This Article:

The corrosion scenario in human body: Stainless steel 316L orthopaedic implants

Abstract Full-Text HTML Download Download as PDF (Size:169KB) PP. 184-188
DOI: 10.4236/ns.2012.43027    8,197 Downloads   16,095 Views   Citations

ABSTRACT

As the world’s populations increase and age, there is a parallel increase in the number of medical procedures addressed to bone related injuries. It is estimated that approximately 1 million of orthopaedic implant surgeries in association with total joint replacements are needed every year. This number is expected to double between 1999 and 2025 as a result of increasing numbers of musculoskeletal injuries (i.e., due to routine activities such as work, sport, etc.) and musculoskeletal diseases (i.e., such as osteoporosis, arthritis and bursitis due to increase age). Consequently, the increase demand for better quality of life has necessarily led people to opt for high quality orthopaedic devices for early recovery and speedy resumption of their routine activities. Unfortunately in the present time, it has been found that the current used orthopaedic implants have the tendencies to fail after long period of usage, due to the corrosion issue of implant in the human body. Therefore, this paper provides a simple overview about the corrosion issue of stainless steel (SS) 316L as implants in human body. Electrophoretic deposition (EPD) of hydroxypaptite (HA) bioceramic was proposed as the approach to minimize the corrosion phenomena. Additionally, the corrosion testing of HA coated SS 316L in comparison to pristine SS 316L was also performed and discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Chew, K. , Zein, S. and Ahmad, A. (2012) The corrosion scenario in human body: Stainless steel 316L orthopaedic implants. Natural Science, 4, 184-188. doi: 10.4236/ns.2012.43027.

References

[1] Mudali, U.K., Sridhar, T.M. and Raj, B. (2003) Corrosion of bio implants. Sadhana-Academy Proceedings in Engineering Sciences, 28, 601-637.
[2] Sivakumar, M., Kamachi Mudali, U. and Rajeswari, S. (1995) Investigation of failures in stainless steel orthopaedic implant devices: pit-induced fatigue cracks. Journal of Materials Science Letters, 14, 148-151. doi:10.1007/BF00456573
[3] Gopi, D., Prakash, V.C.A. and Kavitha, L. (2009) Evaluation of hydroxyapatite coatings on borate passivated 316L SS in Ringer’s solution. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 29, 955-958.
[4] Sridhar, T.M., Mudali, U.K. and Subbaiyan, M. (2003) Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corrosion Science, 45, 237-252. doi:10.1016/S0010-938X(02)00091-4
[5] Dobbs, H.S. and Scales, J.T., (1979) Fracture and corrosion in stainless steel total hip replacement stem. In: Syrett, B.C. and Acharya, A. Eds., Corrosion and Degradation of Implanted Materials, American Society for Testing and Materials, 254-258.
[6] Sutow, E.J. and Pollack, S.R., (1981) Biocompatibility of clinical implant materials I. In: William, D.F. Eds., CRC Press, Boca Raton, 45-48.
[7] Gurappa, I. (2002) Development of appropriate thickness ceramic coatings on 316 L stainless steel for biomedical applications. Surface and Coatings Technology, 161, 70- 78. doi:10.1016/S0257-8972(02)00380-8
[8] Sivakumar, M. and Rajeswari, S. (1992) Investigation of failures in stainless-steel orthopaedic implant devices: Pitinduced-stress-corrosion cracking. Journal of Materials Science Letters, 11, 1039-1042. doi:10.1007/BF00729754
[9] Tüken, T., (2006) Polypyrrole films on stainless steel. Surface and Coatings Technology, 200, 4713-4719. doi:10.1016/j.surfcoat.2005.04.011
[10] Okazaki, Y. and Gotoh, E. (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26, 11-21. doi:10.1016/j.biomaterials.2004.02.005
[11] Patterson, S.P., Daffner, R.H. and Gallo, R.A. (2005) Electrochemical corrosion of matal implants. American Roentgen Ray Society, 184, 1219-1222.
[12] Silver, F. and Doillon, C., (1989) Biocompatibility: Interactions of biological and implantable materials, VCH Publishers, New York.
[13] Jacobs, J.J., Gilbert, J.L. and Urban, R.M. (1998) Corrosion of metal orthopaedic implants. Journal of Bone and Joint Surgery-American Volume, 80A, 268-282.
[14] Kong, H., Wilkinson, J.L., Coel, J.Y., Gu, X., Urness, M., Kim, T.H. and Bass, J.L., (2002) Corrosive behaviour of amplatzer devices in experimental and biological environments. Cardiol Young, 12, 260-265. doi:10.1017/S1047951102000562
[15] Fernandes, M.H. (1999) Effect of stainless steel corrosion products on in vitro biomineralization. Journal of Biomaterials Applications, 14, 113-168.
[16] Costa, M.A. and Fernandes, M.H., (2000) Proliferation/ differentiation of osteoblastic human alveolar bone cell cultures in the presence of stainless steel corrosion products. Journal of Materials Science: Materials in Medicine, 11, 141-153. doi:10.1023/A:1008975507654
[17] Sivakumar, M., Mudali, U.K. and Rajeswari, S. (1993) Compatibility of ferritic and duplex stainless steels as implant materials. Journal of Materials Science, 28, 6081- 6086. doi:10.1007/BF00365025
[18] Sivakumar, M., Mudali, U.K. and Rajeswari, S. (1993) Pit-induced corrosion failures in stainless steel orthopaedic implant devices. Proceeding of 12th International Corrosion Congress, Houston, 1949-1956.
[19] Lemons, J.E. (1998) Surface modifications of surgical implants. Surface and Coatings Technology, 103-104, 135- 137.
[20] Gurrappa, I. (2001) Corrosion and its importance in selection of materials for biomedical applications. Corrosion Prevention and Control, 48, 23-37.
[21] González-Carrasco, J.L., Escudero, M.L., Chao, J. and García-Alonso, M.C. (1998) Thermal oxidation treatments in the development of new coated biomaterials: Application to the MA 956 superalloy. Materials and Manufacturing Processes, 13, 431-443. doi:10.1080/10426919808935260
[22] Montenero, A., Gnappi, G., Ferrari, F., Cesari, M., Salvioli, E., Mattogno, L., Kaciulis, S. and Fini, M., (2000) Sol-gel derived hydroxyapatite coatings on titanium substrate. Journal of Materials Science, 35, 2791-2797. doi:10.1023/A:1004738900778
[23] Feng, B., Chen, J.Y. and Zhang, X.D. (2001) Calcium phosphate coating on titanium induced by phosphating. Key Engineering Materials, 192-195, 167-170. doi:10.4028/www.scientific.net/KEM.192-195.167
[24] Gao, W., Liu, Z. and Li, Z., (2001) Nano- and microcrystal coatings and their high-temperature applications. Advanced Materials (Weinheim, Germany), 13, 1001-1004. doi:10.1002/1521-4095(200107)13:12/13<1001::AID-ADMA1001>3.0.CO;2-V
[25] Kawahara, H. (1987) Bioceramics for hard tissue replacements. Clinical Materials, 2, 181-206. doi:10.1016/0267-6605(87)90044-8
[26] Ding, X., Yamashita, K. and Umegaki, T., (1995) Coating of calcium phosphate on alumina ceramics by electrophoretic deposition. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 103 (1200), 867-869. doi:10.2109/jcersj.103.867
[27] Kim, T.N., Feng, Q.L., Luo, Z.S., Cui, F.Z. and Kim, J.O., (1998) Highly adhesive hydroxyapatite coatings on aluna substrates prepared by ion-beam assisted deposition. Surface and Coatings Technology, 99, 20-23. doi:10.1016/S0257-8972(97)00121-7
[28] Oh, K.T. and Park, Y.S. (1998) Plasma-sprayed coating of hydroxylapatite on super austenitic stainless steels. Surface and Coatings Technology, 110, 4-12. doi:10.1016/S0257-8972(98)00537-4
[29] Santos, J.D.S. and Monteiro, F.J. (1990) Wear behaviour of stainless steel after Al2O3 plasma spraying for biome- dical applications. Surface Engineering, 6, 209-212.
[30] Xiao, X.F. and Liu, R.F. (2006) Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Materials Letters, 60, 2627-2632. doi:10.1016/j.matlet.2006.01.048
[31] White, A.A., Best, S.M. and Kinloch, I.A., (2007) Hydroxyapatite-carbon nanotube composites for biomedical applications: A review. International Journal of Applied Ceramic Technology, 4, 1-13. doi:10.1111/j.1744-7402.2007.02113.x
[32] Suchanek, W. and Yoshimura, M., (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 13, 94-117. doi:10.1557/JMR.1998.0015
[33] Deeb, M.E. and Holmes, R.E., (1989) Tissue response to facial contour augmentation with dense and porous hydroxyapatite in rhesus monkeys. Journal of Oral and Maxillofacial Surgery, 47, 1282-1289. doi:10.1016/0278-2391(89)90725-8
[34] Lynn, A.K. and DuQuesnay, D.L., (2002) Hydroxyapatite-coated Ti 6Al 4V Part 1: The effect of coating thickness on fatigue behaviour. Biomaterials, 23, 1937-1946. doi:10.1016/S0142-9612(01)00321-0
[35] Boccaccini, A.R., Roether, J.A., Thomas, B.J.C., M.S.P., S., Esther, C., Erick, S. and Jane, M.E., (2006) The electrophoretic deposition of inorganic nanoscaled materials: A review. Journal of the Ceramic Society of Japan, 14, 1-14. doi:10.2109/jcersj.114.1
[36] Boccaccini, A.R. and Zhitomirsky, I., (2002) Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Current Opinion in Solid State & Materials Science, 6, 251-260. doi:10.1016/S1359-0286(02)00080-3
[37] Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Jane Minay, E. and Shaffer, M.S.P., (2006) Electrophoretic deposition of carbon nanotubes. Carbon, 44, 3149- 3160. doi:10.1016/j.carbon.2006.06.021
[38] Van der Biest, O.O. and Vandeperre, L.J., (1999) Electrophoretic deposition of materials. Annual Review of Ma- terials Science, 29, 327-352. doi:10.1146/annurev.matsci.29.1.327
[39] Besra, L. and Liu, M., (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52, 1-61. doi:10.1016/j.pmatsci.2006.07.001
[40] Zhitomirsky, I., (2006) Electrophoretic deposition of organic-inorganic nanocomposites. Journal of Materials Science, 41, 8186-8195. doi:10.1007/s10853-006-0994-7
[41] Kokubo, T., Ito, S., Huang, Z.T., Hayashi, T., Sakka, S., Kitsugi, T. and Yamamuro, T., (1990) Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W. Journal of Biomedical Materials Research, 24, 331-343. doi:10.1002/jbm.820240306
[42] Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. and Yamamuro, T., (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A- W3. Journal of Biomedical Materials Research, 24, 721- 734. doi:10.1002/jbm.820240607
[43] Al-Mobarak, N.A., Al-Swayih, A.A. and Al-Rashoud, F.A., (2011) Corrosion behavior of Ti-6Al-7Nb alloy in biological solution for dentistry applications. International Journal of Electrochemical Science, 6, 2031-2042.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.