Regulation of Nitric Oxide by Cigarette Smoke in Airway Cells

Abstract

Background and Objectives: Exhaled nitric oxide (NO) is decreased by smoking while oxides of nitrogen such as nitrites/nitrates (NOx) are increased. It was hypothesised that in vitro cigarette smoke extract (CSE) would either inhibit NO generation by increasing the NO synthase inhibitor, NG, NG-dimethyl-L-arginine (ADMA) or increase NOx levels via an oxidation pathway, which in turn could be inhibited by the antioxidant N-acetylcysteine NAC. Methods: Transformed airway cells (A549) were cultured with control medium, 1.0% CSE in culture medium, or 0.8 mM NAC with 1.0% CSE. Baseline L-arginine, NOx and ADMA levels were measured in the media. Conditioned media were then sampled at 1hour, 6 hours, 24 hours, 48 hours and 72 hours after incubation. Results: CSE induced significantly higher NOx levels (mean (SD) peak increase of 135.8 (126.6)% after incubation for 6 hours (p < 0.0005)). NAC pre-treatment partially reversed this effect to 35.6 (21.4)% at 6 hours (p = 0.009). ADMA levels were significantly higher in the CSE conditioned media compared with control media (p = 0.02) while NAC pre-treatment did not affect ADMA levels. Conclusions: CSE increased NOx which was partially reversed by NAC pre-treatment. ADMA levels were also increased after CSE exposure, suggesting that it activates the NO pathway via oxidative-stress while inhibition probably occurs via both ADMA and NOS.

Share and Cite:

J. Liu, J. Wang, A. Sim, N. Mohan, S. Chow, D. Yates, X. Wang and P. Thomas, "Regulation of Nitric Oxide by Cigarette Smoke in Airway Cells," Open Journal of Respiratory Diseases, Vol. 2 No. 1, 2012, pp. 9-16. doi: 10.4236/ojrd.2012.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] X. M. Wei, H. S. Kim, R. K. Kumar, G. J. Heywood, J. E. Hunt, H. P. McNeil, et al., “Effects of Cigarette Smoke Degranulation and on Production by Mast Cells and Epithelial Cells,” Respiratory Research, Vol. 6, No. 1, 2005, pp. 108-112. doi:10.1186/1465-9921-6-108.
[2] J. B. Hibbs, Z. Vavrin Jr. and R. R. Taintor, “L-Arginine Is Required for Expression of the Activated Macrophage Effector Mechanism Causing Selective Metabolic Inhibition in Target Cells,” Journal of Immunology, Vol. 138, No. 2, 1987, pp. 550-565.
[3] D. D. Rees, R. M. Palmer and S. Moncada, “Role of Endothelium-Derived Nitric Oxide in the Regulation of Blood Pressure,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 86, No. 3, 1989, pp. 3375-3378. doi:10.1073/pnas.86.9.3375.
[4] P. Vallance, A. Leone, A. Calver, J. Collier and S. Moncada, “Accumulation of an Endogenous Inhibitor of Nitric Oxide Synthesis in Chronic Renal Failure,” The Lancet, Vol. 339, No. 8793, 1992, pp. 572-575. doi:10.1016/0140-6736(92)90865-Z.
[5] R. M. Palmer, D. S. Ashton and S. Moncada, “Vascular Endothelial Cells Synthesise Nitric Oxide from L-Arginine,” Nature, Vol. 333, No. 6174, 1988, pp. 664-666. doi:10.1038/333664a0.
[6] J. G. Umans, “Less Nitric Oxide, More Pressure, or the Converse?” Lancet, Vol. 349, No. 9055, 1997, pp. 816-817. doi:10.1016/S0140-6736(97)22012-X.
[7] J. P. Cooke, “Does ADMA Cause Endothelial Dysfunction?” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 20, No. 9, 2000, pp. 2032-2037. doi:10.1161/01.ATV.20.9.2032
[8] Y. Kakimoto and S. Akazawa, “Isolation and Identification of N-G, N-G-and N-G, N’-G-Dimethyl-Arginine, N-Epsilon-Mono-, di-, and Trimethyllysine, and GlucoSylgalactosyl- and Galactosyl-Delta-Hydroxylysine from Human Urine,” Journal of Biological Chemistry, Vol. 245, No. 21, 1970, pp. 5751-5758.
[9] H. Matsuoka, S. Itoh, M. Kimoto, K. Kohno, O. Tamai, Y. Wada, et al. “Asymmetrical Dimethylarginine, an Endogenous Nitric Oxide Synthase Inhibitor, in Experimental Hypertension,” Hypertension, Vol. 29, 1997, pp. 242-247.
[10] N. Fujiwara, T. Osanai, T. Kamada, T. Katoh, K. Takahashi and K. Okumura, “Study on the Relationship between Plasma Nitrite and Nitrate Level and Salt Sensitivity in Human Hypertension: Modulation of Nitric Oxide Synthesis by Salt Intake,” Circulation, Vol. 101, No. 8, 2000, pp. 856-861.
[11] L. J. Millatt, G. S. Whitely, D. Li, J. M. Leiper, H. M. Siragy, R. M. Carey, et al., “Evidence for Dysregulation of Dimethylarginine Dimethylaminohydrolase I in Chronic Hypoxia—induced Pulmonary Hypertension,” Circulation, Vol. 108, No. 12, 2003, pp. 1493-1498. doi:10.1161/01.CIR.0000089087.25930.FF
[12] Q. Feng, X. Lu, A. J. Fortin, A. Pettersson, T. Hedner, R. L. Kline, et al., “Elevation of an Endogenous Inhibitor of Nitric Oxide Synthesis in Experimental Congestive Heart Failure,” Cardiovascular Research, Vol. 37, No. 3, 1998, pp. 667-675. doi:10.1016/S0008-6363(97)00242-3
[13] M. Usui, H. Matsuoka, H. Miyazaki, S. Ueda, S. Okuda and T. Imaizumi, “Increased Endogenous Nitric Oxide Synthase Inhibitor in Patients with Congestive Heart Failure,” Life Sciences, Vol. 62, No. 26, 1998, pp. 2425-2430. doi:10.1016/S0024-3205(98)00225-2
[14] V. P. Valkonen, J. Laakso, H. Paiva, T. Lehtimaki, T. A. Lakka, M. Isomustaj?rvi et al., “Asymmetrical Dimethylarginine (ADMA) and Risk of Acute Coronary Events. Does Statin Treatment Influence Plasma ADMA Levels?” Atherosclerosis Supplements, Vol. 4, No. 4, 2003, pp. 19-22. doi:10.1016/S1567-5688(03)00029-1
[15] J. H. Yoo and S. C. Lee, “Elevated Levels of Plasma Homocyst(e)ine and Asymmetric Dimethylarginine in Elderly Patients with Stroke,” Atherosclerosis, Vol. 158, No. 2, 2001, pp. 425-30. doi:10.1016/S0021-9150(01)00444-0
[16] P. Lluch, B. Torondel, P. Medina, G. Segarra, J. A. Del Olmo, M. A. Serra, et al. “Plasma Concentrations of Nitric Oxide and Asymmetric Dimethylarginine in Human Alcoholic Cirrhosis,” Journal of Hepatology, Vol. 41, No. 1, 2004, pp. 55-59. doi:10.1016/j.jhep.2004.03.016
[17] M. L. Selley, “Increased Concentrations of Homocysteine and Asymmetric Dimethylarginine and Decreased Concentrations of Nitric Oxide in the Plasma of Patients with Alzheimer’s Disease,” Neurobiology of Aging, Vol. 24, No. 7, 2003, pp. 903-907. doi:10.1016/S0197-4580(03)00007-1
[18] J. Wang, A. S. Sim, X. L. Wang, C. Salonikas, D. Naidoo and D. E. Wilcken, “Relations between Plasma Asymmetric Dimethylarginine (ADMA) and Risk Factors for Coronary Disease,” Atherosclerosis, Vol. 184, No. 2, 2006, pp. 383-388. doi:10.1016/j.atherosclerosis.2005.05.002
[19] H. M. Eid, H. Arnesen, E. M. Hjerkinn, T. Lyberg and I. Seljeflot, “Relationship between Obesity, Smoking, and the Endogenous Nitric Oxide Synthase Inhibitor, Asymmetric Dimethylarginine,” Metabolism, Vol. 53, No. 12, 2004, pp. 1574-1579. doi:10.1016/j.metabol.2004.06.026
[20] S. A. Kharitonov, D. Yates, R. A. Robbins, R. Logan-Sinclair, E. A. Shinebourne and P. J. Barnes, “Increased Nitric Oxide in Exhaled Air of Asthmatic Patients,” Lancet, Vol. 343, No. 8890, 1994, pp. 133-135. doi:10.1016/S0140-6736(94)90931-8
[21] D. H. Yates, S. A. Kharitonov, R. A. Robbins, P. S. Thomas and P. J. Barnes, “Effect of a Nitric Oxide Synthase Inhibitor and a Glucocorticosteroid on Exhaled Nitric Oxide,” American Journal of Respiratory and Critical Care Medicine, Vol. 152, No. 3, 1995, pp. 892-896.
[22] K. Ganas, S. Loukides, G. Papatheodorou, P. Panagou and N. Kalogeropoulos, “Total Nitrite/Nitrate in Expired Breath Condensate of Patients with Asthma,” Respirology Medicine, Vol. 95, No. 8, 2001, pp. 649-654. doi:10.1053/rmed.2001.1117
[23] M. Corradi, A. Pesci, R. Casana, R. Alinovi, M. Goldoni, M. V. Vettori, et al., “Nitrate in Exhaled Breath Condensate of Patients with Different Airway Diseases,” Nitric Oxide, Vol. 8, No. 1, 2003, pp. 26-30. doi:10.1016/S1089-8603(02)00128-3
[24] B. Balint, L. E. Donnelly, T. Hanazawa, S. A. Kharitonov and P. J. Barnes, “Increased Nitric Oxide Metabolites in Exhaled Breath Condensate after Exposure to Tobacco Smoke,” Thorax, Vol. 56, No. 6, 2001, pp. 456-461. doi:10.1136/thorax.56.6.456
[25] J. Liu and P. S. Thomas, “Cigarette Smoking Increases Nitrite/Nitrate in Exhaled Breath Condensate,” Respirology, Vol. 9, 2004, p. A40.
[26] S. A. Kharitonov, R. A. Robbins, D. Yates, V. Keatings and P. J. Barnes, “Acute and Chronic Effects of Cigarette Smoking on Exhaled Nitric Oxide,” American Journal of Respiratory and Critical Care Medicine, Vol. 152, No. 2, 1995, pp. 609-612.
[27] D. H. Yates, H. Breen and P. S. Thomas, “Passive Smoke Inhalation Decreases Exhaled Nitric Oxide in Normal Subjects,” American Journal of Respiratory and Critical Care Medicine, Vol. 164, No. 6, 2001, pp. 1043-1046.
[28] T. Tokimoto and K. Shinagawa, “Nitric Oxide Generation in Aqueous Solutions of Cigarette Smoke and Approaches to its Origin,” Biological Chemistry, Vol. 382, No. 11, 2001, pp. 1613-1619. doi:10.1515/BC.2001.196
[29] R. A. Robbins, P. J. Barnes, D. R. Springall, J. B. Warren, O. J. Kwon, L. D. Buttery, et al., “Expression of Inducible Nitric Oxide in Human Lung Epithelial Cells,” Biochemical and Biophysical Research Communications, Vol. 203, No. 1, 1994, pp. 209-218. doi:10.1006/bbrc.1994.2169
[30] P. R. Mills, R. J. Davies and J. L. Devalia, “Airway Epithelial Cells, Cytokines, and Pollutants,” American Journal of Respiratory and Critical Care Medicine, Vol. 160, 1999, pp. S38-S43.
[31] Anonymous, “N-Acetylcysteine,” Alternative Medicine Review, Vol. 5, No. 5, 2000, pp. 467-471.
[32] N. van Zandwijk, “N-Acetylcysteine (NAC) and Glutathione (GSH): Antioxidant and Chemopreventive Properties, with Special Reference to Lung Cancer,” Journal of Cellular Biochemistry, Vol. 59, No. S22, 1995, pp. 24-32. doi:10.1002/jcb.240590805
[33] G. S. Kelly, “Clinical Applications of N-Acetylcysteine,” Alternative Medicine Review, Vol. 3, No. 2, 1998, pp. 114-127.
[34] D. F. Rogers and P. K. Jeffery, “Inhibition by Oral N-acetylcysteine of Cigarette Smoke-Induced “Bronchitis” in the Rat,” Experimental Lung Research, Vol. 10, No. 3, 1986, pp. 267-283. doi:10.3109/01902148609061497
[35] R. B. Balansky, F. D’Agostini, P. Zanacchi and S. De Flora. “Protection by N-Acetylcysteine of the Histopathological and Cytogenetical Damage Produced by Exposure of Rats to Cigarette Smoke,” Cancer Letters, Vol. 64, No. 2, 1992, pp. 123-131. doi:10.1016/0304-3835(92)90072-4
[36] T. P. Misko, R. J. Schilling, D. Salvemini, W. M. Moore and M. G. Currie, “A Fluorometric Assay for the Measurement of Nitrite in Biological Samples,” Analytical Biochemistry, Vol. 214, No. 1, 1993, pp. 11-16. doi:10.1006/abio.1993.1449
[37] T. Teerlink, R. J. Nijveldt, S. de Jong and P. A. M. van Leeuwen, “Determination of Arginine, Asymmetric Dimethylarginine, and Symmetric Dimethylarginine in Human Plasma and Other Biological Samples by High-Performance Liquid Chromatography,” Analytical Biochemistry, Vol. 303, No. 2, 2002, pp. 131-137. doi:10.1006/abio.2001.5575
[38] R. Schnabel, S. Blankenberg, E. Lubos, K. J. Lackner, H. J. Rupprecht, C. Espinola-Klein, et al., “Asymmetric Dimethylarginine and the Risk of Cardiovascular Events and Death in Patients with Coronary Artery Disease: Results from the AtheroGene Study,” Circulation Research, Vol. 97, No. 5, 2005, pp. e53-e59. doi:10.1161/01.RES.0000181286.44222.61
[39] P. S. Thomas, R. E. Schreck and S. C. Lazarus, “Tobacco Smoke Releases Performed Mediators from Canine Mast Cells and Modulates Prostaglandin Production,” American Journal of Physiology, Vol. 263, No. 1, 1992, pp. L67-L72.
[40] M. Maniscalco, V. Di Mauro, E. Farinaro, L. Carratu and M. Sofia, “Transient Decrease of Exhaled Nitric Oxide after Acute Exposure to Passive Smoke in Healthy Subjects,” Archives of Environmental Health, Vol. 57, No. 5, 2002, pp. 437-440. doi:10.1080/00039890209601434
[41] P. Bulau, D. Zakrzewicz, K. Kitowska, J. Leiper, A. Gunther, F. Grimminger, et al., “Analysis of Methylarginine Metabolism in the Cardiovascular System Identifies the Lung as a Major Source of ADMA,” American Journal of Physiology—Lung Cellular and Molecular Biology, Vol. 292, No. 1, 2007, pp. L18-L24. doi:10.1152/ajplung.00076.2006
[42] W. K. Paik and S. Kim, “Protein Methylase I. Purification and Properties of the Enzyme,” Journal of Biological Chemistry, Vol. 243, No. 9, 1968, pp. 2108-2114.
[43] A. O. Yildirim, P. Bulau, D. Zakrzewicz, K. E. Kitowska, N. Weissmann, F. Grimminger, et al., “Increased Protein Arginine Methylation in Chronic Hypoxia: Role of Protein Arginine Methyltransferases,” American Journal of Respiratory Cell and Molecular Biology, Vol. 35, No. 4, 2006, pp. 436-443. doi:10.1165/rcmb.2006-0097OC
[44] J. L. Jiang, X. H. Zhang, N. S. Li, W. Q. Rang, Y. Feng, C. P. Hu, et al., “Probucol Decreases Asymmetrical Dimethylarginine Level by Alternation of Protein Arginine Methyltransferase I and Dimethylarginine Dimethylaminohydrolase Activity,” Cardiovascular Drugs and Therapy, Vol. 20, No. 4, 2006, pp. 281-294. doi:10.1007/s10557-006-9065-1
[45] J. Liu, A. Sandrini, M. C. Thurston, D. H. Yates and P. S. Thomas, “Nitric Oxide and Exhaled Breath Nitrite/Nitrates in Chronic Obstructive Pulmonary Disease Patients,” Respiration, Vol. 74, No. 6, 2007, pp. 617-623. doi:10.1159/000106379
[46] O. I. Aruoma, B. Halliwell, B. M. Hoey and J. Butler, “The Antioxidant Action of N-Acetylcysteine: Its Reaction with Hydrogen Peroxide, Hydroxyl Radical, Super oxide, and Hypochlorous Acid,” Free Radical Biology and Medicine, Vol. 6, No. 6, 1989, pp. 593-597. doi:10.1016/0891-5849(89)90066-X
[47] M. Benrahmoune, P. Therond and Z. Abedinzadeh, “The Reaction of Superoxide Radical with N-Acetylcysteine,” Free Radical Biology and Medicine, Vol. 29, No. 8, 2000, pp. 775-782. doi:10.1016/S0891-5849(00)00380-4
[48] A. M. Sadowska, B. Manuel-y-Keenoy and W. A. De Backer, “Antioxidant and Anti-Inflammatory Efficacy of NAC in the Treatment of COPD: Discordant in Vitro and in vivo Dose-Effects: A Review,” Pulmonary Pharmacology & Therapeutics, Vol. 20, No. 1, 2007, pp. 9-22. doi:10.1016/j.pupt.2005.12.007
[49] K. Husain, C. Whitworth, S. M. Somani and L. P. Rybak, “Carboplatin-induced Oxidative Stress in Rat Cochlea,” Hearing Research, Vol. 159, No. 1-2, 2001, pp. 14-22. doi:10.1016/S0378-5955(01)00306-9
[50] K. Prabhakaran, L. Li, J. L. Borowitz and G. E. Isom, “Inducible Nitric Oxide Synthase Up-Regulation and Mitochondrial Glutathione Depletion Mediate Cyanide-Induced Necrosis in Mesencephalic Cells,” Journal of Neuroscience Research, Vol. 84, No. 5, 2006, pp. 1003-1011. doi:10.1002/jnr.20998
[51] S. Payabvash, M. H. Ghahremani, A. Goliaei, A. Mandegary, H. Shafaroodi, M. Amanlou, et al., “Nitric Oxide Modulates Glutathione Synthesis During Endotoxemia,” Free Radical Biology and Medicine, Vol. 41, No. 12, 2006, pp. 1817-1828. doi:10.1016/j.freeradbiomed.2006.09.010
[52] E. Okur, M. Kilinc, I. Yildirim, M. A. Kilic and F. I. Tolun, “Effect of N-Acetylcysteine on Carboplatin-Induced Ototoxicity and Nitric Oxide Levels in a Rat Model,” Laryngoscope, Vol. 117, No. 12, 2007, pp. 2183-2186. doi:10.1097/MLG.0b013e31813e6041
[53] Z. Xia, P. R. Nagareddy, Z. Guo, W. Zhang and J. H. McNeill, “Antioxidant-N-Acetylcysteine Restores Systemic Nitric Oxide Availability and Corrects Depressions in Arterial Blood Pressure and Heart Rate in Diabetic Rats,” Free Radical Research, Vol. 40, No. 2, 2006, pp. 175-184. doi:10.1080/10715760500484336
[54] S. Bergamini, C. Rota, R. Canali, M. Staffieri, F. Daneri, A. Bini, et al., “N-Acetylcysteine Inhibits In Vivo Nitric Oxide Production by Inducible Nitric Oxide Synthase,” Nitric Oxide, Vol. 5, No. 4, 2001, pp. 349-360. doi:10.1006/niox.2001.0356
[55] W. Z. Zhang, K. Venardos, J. Chin-Dusting and D. M. Kaye, “Adverse Effects of Cigarette Smoke on NO Bioavailability. Role of Arginine Metabolism and Oxidative Stress,” Hypertension, Vol. 48, No. 2, 2006, pp. 278-285. doi:10.1161/01.HYP.0000231509.27406.42
[56] C. Bergeron, L. P. Boulet, N. Page, M. Laviolette, N. Zimmermann, M. E. Rothenberg, et al., “Influence of Cigarette Smoke on the Arginine Pathway in Asthmatic Airways: Increased Expression of Arginase I,” Journal of Allergy and Clinical Immunology, Vol. 119, No. 2, 2007, pp. 391-397. doi:10.1016/j.jaci.2006.10.030
[57] M. Imamura, Y. Waseda, G. V. Marinova, T. Ishibashi, S. Obayashi, A. Sasaki, et al., “Alterations of NOS, Arginase and DDAH Proteins Expression in the Rabbit Cavernous Tissue Following Administration of Cigarette Smoke Extract,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, Vol. 293, No. 5, 2007, pp. R2081-R2089. doi:10.1152/ajpregu.00406.2007

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.